LOGICAL INDEPENDENCE IN QUANTUM LOGIC

被引:22
作者
REDEI, M
机构
[1] Faculty of Natural Sciences, Loránd Eötvös University, Budapest, H-1088
关键词
D O I
10.1007/BF02059228
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The projection lattices P(M1), P(M2) of two von Neumann subalgebras M1, M2 of the von Neumann algebra M are defined to be logically independent if A AND B not-equal 0 for any 0 not-equal A is-an-element-of P(M1), 0 not-equal B is-an-element-of P(M2). After motivating this notion in independence, it is shown that P(M1), P(M2) are logically independent if M1 is a subfactor in a finite factor M and P(M1), P(M2) commute. Also, logical independence is related to the statistical independence conditions called C*-independence W*-independence, and strict locality. Logical independence of P(M1), P(M2) turns out to be equivalent to the C*-independence of (M1, M2) for mutually commuting M1, M2, and it is shown that if (M1, M2) is a pair of (not necessarily commuting) von Neumann subalgebras, then P(M1), P(M2) are logically independent in the following cases: M is a finite-dimensional full-matrix algebra and M1, M2 are C*-independent; (M1, M2) is a W*-independent pair; M1, M2 have the property of strict locality.
引用
收藏
页码:411 / 422
页数:12
相关论文
共 17 条
[1]   The logic of quantum mechanics [J].
Birkhoff, G ;
von Neumann, J .
ANNALS OF MATHEMATICS, 1936, 37 :823-843
[2]   QUANTUM-LOGICS WITH JAUCH-PIRON STATES [J].
BUNCE, LJ ;
NAVARA, M ;
PTAK, P ;
WRIGHT, JDM .
QUARTERLY JOURNAL OF MATHEMATICS, 1985, 36 (143) :261-271
[3]  
BUNCE LJ, 1993, MATH Z, V215, P491
[4]   ALGEBRAIC APPROACH TO QUANTUM FIELD THEORY [J].
HAAG, R ;
KASTLER, D .
JOURNAL OF MATHEMATICAL PHYSICS, 1964, 5 (07) :848-&
[5]  
Haag R., 1996, LOCAL QUANTUM PHYS F
[6]  
HAMHALTER J, 1993, ANN I H POINCARE-PHY, V58, P173
[7]  
HORUZHY S, 1983, INTRO ALGEBRAIC QUAN, V72, P1
[8]   INDEX FOR SUBFACTORS [J].
JONES, VFR .
INVENTIONES MATHEMATICAE, 1983, 72 (01) :1-25
[9]   GENERAL QUANTUM FIELD THEORIES + STRICT LOCALITY [J].
KRAUS, K .
ZEITSCHRIFT FUR PHYSIK, 1964, 181 (01) :1-&
[10]   ON TOTAL NONCOMMUTATIVITY IN QUANTUM-MECHANICS [J].
LAHTI, PJ ;
YLINEN, K .
JOURNAL OF MATHEMATICAL PHYSICS, 1987, 28 (11) :2614-2617