MODELS OF FRACTAL CRACKS

被引:143
作者
BOUCHAUD, JP
BOUCHAUD, E
LAPASSET, G
PLANES, J
机构
[1] CEA,SERV PHYS ETAT CONDENSE,F-91191 GIF SUR YVETTE,FRANCE
[2] UNIV CAMBRIDGE,DEPT MAT SCI & MET,CAMBRIDGE CB2 3QZ,ENGLAND
[3] OFF NATL ETUD & RECH AEROSP,F-92322 CHATILLON,FRANCE
关键词
D O I
10.1103/PhysRevLett.71.2240
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present theoretical ideas which allow us to understand part of the scaling laws recently observed on branched cracks. We argue that some features are common to all critical branched structures, which barely survive when propagating. These ideas are illustrated by the directed percolation problem, which serves as an excellent toy model. Finally, we propose a Langevin equation for unbranched cracks in three dimensions, which naturally leads to self-affine structures.
引用
收藏
页码:2240 / 2243
页数:4
相关论文
共 42 条
  • [1] ALSTROM P, 1988, PHYS REV A, V38, P4095
  • [2] BARABASI AL, 1992, SURFACE DISORDERING
  • [3] FRACTAL DIMENSION OF FRACTURED SURFACES - A UNIVERSAL VALUE
    BOUCHAUD, E
    LAPASSET, G
    PLANES, J
    [J]. EUROPHYSICS LETTERS, 1990, 13 (01): : 73 - 79
  • [4] STATISTICS OF BRANCHED FRACTURE SURFACES
    BOUCHAUD, E
    LAPASSET, G
    PLANES, J
    NAVEOS, S
    [J]. PHYSICAL REVIEW B, 1993, 48 (05): : 2917 - 2928
  • [5] BOUCHAUD E, 1991, RECHERCHE, V22, P808
  • [6] DIRECTED PERCOLATION AND REGGEON FIELD-THEORY
    CARDY, JL
    SUGAR, RL
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (12): : L423 - L427
  • [7] Ceperley D., 1979, MONTE CARLO METHODS
  • [8] A PROBABILISTIC MODEL OF BRITTLE CRACK FORMATION
    CHUDNOVSKY, A
    KUNIN, B
    [J]. JOURNAL OF APPLIED PHYSICS, 1987, 62 (10) : 4124 - 4129
  • [9] ON THE INTERPRETATION OF THE FRACTAL CHARACTER OF FRACTURE SURFACES
    DAUSKARDT, RH
    HAUBENSAK, F
    RITCHIE, RO
    [J]. ACTA METALLURGICA ET MATERIALIA, 1990, 38 (02): : 143 - 159
  • [10] SCALING AND MULTISCALING LAWS IN RANDOM FUSE NETWORKS
    DE ARCANGELIS, L
    HERRMANN, HJ
    [J]. PHYSICAL REVIEW B, 1989, 39 (04) : 2678 - 2684