STABLE BOUNDARY-CONDITIONS AND DIFFERENCE-SCHEMES FOR NAVIER-STOKES EQUATIONS

被引:48
作者
DUTT, P [1 ]
机构
[1] UNIV CALIF LOS ANGELES,LOS ANGELES,CA 90024
关键词
D O I
10.1137/0725018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:245 / 267
页数:23
相关论文
共 13 条
[1]   OPTIMAL TIME SPLITTING FOR TWO-DIMENSIONAL AND 3-DIMENSIONAL NAVIER-STOKES EQUATIONS WITH MIXED DERIVATIVES [J].
ABARBANEL, S ;
GOTTLIEB, D .
JOURNAL OF COMPUTATIONAL PHYSICS, 1981, 41 (01) :1-33
[2]  
DUTT P, 1985, ICASE8537 ICASENASA
[3]  
Godunov S.K., 1959, MAT SBORNIK, V47, P271
[4]  
GOODMAN JB, 1982, PAM99 U CAL CTR PUR
[5]   INCOMPLETELY PARABOLIC PROBLEMS IN FLUID-DYNAMICS [J].
GUSTAFSSON, B ;
SUNDSTROM, A .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1978, 35 (02) :343-357
[6]   A RANDOM CHOICE FINITE-DIFFERENCE SCHEME FOR HYPERBOLIC CONSERVATION-LAWS [J].
HARTEN, A ;
LAX, PD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1981, 18 (02) :289-315
[7]  
HARTEN A, 1981, ICASE8134 ICASENASA
[8]  
LAX PD, 1978, CBMS NSF REGIONAL C, V11
[9]  
MICHELSON D, 1983, SUM P AMS SIAM SEM
[10]   THEORETICAL AND PRACTICAL ASPECTS OF SOME INITIAL BOUNDARY-VALUE PROBLEMS IN FLUID-DYNAMICS [J].
OLIGER, J ;
SUNDSTROM, A .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1978, 35 (03) :419-446