SOLUTION OF LINEAR COMPLEMENTARITY-PROBLEMS USING MINIMIZATION WITH SIMPLE BOUNDS

被引:24
作者
FRIEDLANDER, A [1 ]
MARTINEZ, JM [1 ]
SANTOS, SA [1 ]
机构
[1] STATE UNIV CAMPINAS,DEPT APPL MATH,BR-13081 CAMPINAS,BRAZIL
关键词
HORIZONTAL LINEAR COMPLEMENTARITY PROBLEM; LINEAR COMPLEMENTARITY PROBLEM; BOUND CONSTRAINED MINIMIZATION; OPTIMALITY CONDITIONS; STATIONARY POINTS; GLOBAL;
D O I
10.1007/BF01099464
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We define a minimization problem with simple bounds associated to the horizontal linear complementarity problem (HLCP). When the HLCP is solvable, its solutions are the global minimizers of the associated problem. When the HLCP is feasible, we are able to prove a number of properties of the stationary points of the associated problem. In many cases, the stationary points are solutions of the HLCP. The theoretical results allow us to conjecture that local methods for box constrained optimization applied to the associated problem are efficient tools for solving linear complementarity problems. Numerical experiments seem to confirm this conjecture.
引用
收藏
页码:253 / 267
页数:15
相关论文
共 14 条
[1]  
BONNANS JF, 1993, CONVERGENCE INTERIOR
[2]   CORRECTION [J].
CONN, AR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (03) :764-767
[3]   GLOBAL CONVERGENCE OF A CLASS OF TRUST REGION ALGORITHMS FOR OPTIMIZATION WITH SIMPLE BOUNDS [J].
CONN, AR ;
GOULD, NIM ;
TOINT, PL .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1988, 25 (02) :433-460
[4]  
Cottle, 1992, LINEAR COMPLEMENTARI
[5]   A NEW TRUST REGION ALGORITHM FOR BOUND CONSTRAINED MINIMIZATION [J].
FRIEDLANDER, A ;
MARTINEZ, JM ;
SANTOS, SA .
APPLIED MATHEMATICS AND OPTIMIZATION, 1994, 30 (03) :235-266
[6]   ON THE RESOLUTION OF LINEARLY CONSTRAINED CONVEX MINIMIZATION PROBLEMS [J].
FRIEDLANDER, A ;
MARTINEZ, JM ;
SANTOS, SA .
SIAM JOURNAL ON OPTIMIZATION, 1994, 4 (02) :331-339
[7]   EQUIVALENT DIFFERENTIABLE OPTIMIZATION PROBLEMS AND DESCENT METHODS FOR ASYMMETRIC VARIATIONAL INEQUALITY PROBLEMS [J].
FUKUSHIMA, M .
MATHEMATICAL PROGRAMMING, 1992, 53 (01) :99-110
[8]  
GULER O, 1993, GENERALIZED LINEAR C
[9]  
Harker P.T., 1990, LECT APPL MATH, V26, P265, DOI DOI 10.1007/978-3-662-12629-5_
[10]  
KANZOW C, 1994, NONLINEAR COMPLEMENT