CLASSICAL LIMIT OF (1+1)-DIMENSIONAL STRING THEORY

被引:130
作者
POLCHINSKI, J
机构
[1] Theory Group, Department of Physics, University of Texas, Austin
基金
美国国家科学基金会;
关键词
D O I
10.1016/0550-3213(91)90559-G
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We find the general classical solution of the Das-Jevicki collective field theory, corresponding to a tachyon background in (1 + 1)-dimensional string theory. The solution has a simple interpretation in the equivalent free Fermi theory, as a state with a dynamical Fermi surface. In terms of the variables corresponding to the upper and lower Fermi momenta, the collective field hamiltonian separates into right- and left-moving pieces. As one application, we discuss the tree-level S-matrix. We also describe briefly a number of interesting particular solutions.
引用
收藏
页码:125 / 140
页数:16
相关论文
共 38 条
[1]   COSMOLOGICAL STRING THEORIES AND DISCRETE INFLATION [J].
ANTONIADIS, I ;
BACHAS, C ;
ELLIS, J ;
NANOPOULOS, DV .
PHYSICS LETTERS B, 1988, 211 (04) :393-399
[2]   STRING THEORY AND 2-DIMENSIONAL QUANTUM-GRAVITY [J].
BANKS, T ;
LYKKEN, J .
NUCLEAR PHYSICS B, 1990, 331 (01) :173-180
[3]  
BANKS T, 1990, RU9064 RUTG PREPR
[4]   PLANAR DIAGRAMS [J].
BREZIN, E ;
ITZYKSON, C ;
PARISI, G ;
ZUBER, JB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 59 (01) :35-51
[5]   STRINGS IN BACKGROUND FIELDS [J].
CALLAN, CG ;
FRIEDAN, D ;
MARTINEC, EJ ;
PERRY, MJ .
NUCLEAR PHYSICS B, 1985, 262 (04) :593-609
[6]   MAKING MASSLESS STRING MASSIVE [J].
CHODOS, A ;
THORN, CB .
NUCLEAR PHYSICS B, 1974, B 72 (03) :509-522
[7]  
COOPER A, SLACPUB5413 PREPR
[8]   CONFORMALLY INVARIANT QUANTIZATION OF THE LIOUVILLE THEORY [J].
CURTRIGHT, TL ;
THORN, CB .
PHYSICAL REVIEW LETTERS, 1982, 48 (19) :1309-1313
[9]   QUANTIZATION OF THE LIOUVILLE MODE AND STRING THEORY [J].
DAS, SR ;
NAIK, S ;
WADIA, SR .
MODERN PHYSICS LETTERS A, 1989, 4 (11) :1033-1041
[10]   CRITICAL-BEHAVIOR IN 2-DIMENSIONAL QUANTUM-GRAVITY AND EQUATIONS OF MOTION OF THE STRING [J].
DAS, SR ;
DHAR, A ;
WADIA, SR .
MODERN PHYSICS LETTERS A, 1990, 5 (11) :799-813