ELECTROMAGNETIC-WAVES IN AN INHOMOGENEOUS-MEDIUM

被引:44
作者
ABBOUD, T
NEDELEC, JC
机构
[1] Centre de Mathématiques Appliquées, Ecole Polytechnique
关键词
D O I
10.1016/0022-247X(92)90144-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the electromagnetic wave problem in an inhomogeneous medium. We first prove uniqueness of the solution using Rellich and Cauchy-Kowalewska theorems. Then we explicitly compute the Dirichlet-Neumann operator on the sphere, we reduce the equations to a problem on a truncated domain, and we give a variational formulation. This formulation reads as a compact perturbation of a coercive operator, which leads to the existence of the solution according to Fredholm's alternative. © 1992.
引用
收藏
页码:40 / 58
页数:19
相关论文
共 12 条
[2]  
COLTON P, 1983, PURE APPLIED MATH
[3]   A DIRECT BOUNDARY INTEGRAL-EQUATION METHOD FOR TRANSMISSION PROBLEMS [J].
COSTABEL, M ;
STEPHAN, E .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1985, 106 (02) :367-413
[4]   EXTERIOR BOUNDARY-VALUE PROBLEM FOR THE TIME-HARMONIC MAXWELL EQUATIONS [J].
KNAUFF, W ;
KRESS, R .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1979, 72 (01) :215-235
[5]   TRANSMISSION PROBLEMS FOR HELMHOLTZ EQUATION [J].
KRESS, R ;
ROACH, GF .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (06) :1433-1437
[6]  
LIONS JL, 1968, PROBLEMES AUX LIMITE, V1
[7]   A BOUNDARY ELEMENT METHOD FOR AN EXTERIOR PROBLEM FOR 3-DIMENSIONAL MAXWELL EQUATIONS [J].
MACCAMY, RC ;
STEPHAN, E .
APPLICABLE ANALYSIS, 1983, 16 (02) :141-163
[8]  
MULLER C, 1969, F MATH THEORY ELECTR
[9]  
NEDELEC JC, RAPPORT INTERNE, V179
[10]  
Rellich F., 1943, JAHRESBER DTSCH MATH, V53, P57