A SIMPLE WAY TO MODEL CURVED METAL BOUNDARIES IN FDTD ALGORITHM AVOIDING STAIRCASE APPROXIMATION

被引:45
作者
MEZZANOTTE, P
ROSELLI, L
SORRENTINO, R
机构
[1] Institute of Electronics, University of Perugia, S. Lucia Canetola 1-06131, Perugia
来源
IEEE MICROWAVE AND GUIDED WAVE LETTERS | 1995年 / 5卷 / 08期
关键词
D O I
10.1109/75.401071
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The conventional FDTD algorithm in Cartesian coordinates uses staircase approximation to treat curvilinear surfaces, This approximation causes loss of accuracy often unacceptable. An extremely simple and more accurate polygonal approximation of curved surfaces is proposed in this paper. The method improves significantly the accuracy of the original FDTD algorithm, without increasing its complexity.
引用
收藏
页码:267 / 269
页数:3
相关论文
共 12 条
[1]  
Yee K.S., Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media, IEEE Trans. Antennas Propagat., AP-14, pp. 302-307, (1966)
[2]  
Taflove A., Brodwin M.E., Numerical solution of steady-state electromagnetic scattering problems using the time-dependent maxwell’s equations, IEEE Trans. Microwave Theory Tech., MTT-23, pp. 623-630, (1975)
[3]  
Jurgens T., Taflove A., Umashankar K., Moore T., Finite-difference time-domain modeling of curved surfaces, IEEE Trans. Antennas Propagat., 40, pp. 357-365, (1992)
[4]  
Harms P., Lee J.F., Mittra R., A study of the nonorthogonal FDTD method versus the conventional technique for computing resonant frequency of cylindrical cavities, IEEE Trans. Microwave Theory Tech., 40, pp. 741-745, (1992)
[5]  
Gwarek W., Analysis of an arbitrarily shaped planar circuit—A time domain approach, IEEE Trans. Microwave Theory Tech., 33, pp. 1067-1072, (1985)
[6]  
Fusco M., FDTD algorithm in curvilinear coordinates, IEEE Trans. Antennas Propagat., 38, pp. 76-89, (1990)
[7]  
Fang J., Ren J., A locally conformed finite-difference time domain algorithm of modeling arbitrary shape planar metal strips, IEEE Trans. Microwave Theory Tech., 41, (1993)
[8]  
Choi D.H., Hoefer W.J.R., A graded mesh FD-TD algorithm for eigenvalue problems, Proc. of I7th Eu. M.C., pp. 413-417, (1987)
[9]  
Fontecha J.L., Cagigal C., Transition rectangular to circular waveguide by means of rectangular guide, Int. Conf. Computation in Electromagn., pp. 378-391, (1991)
[10]  
Niu D.C., Houshmand B., Itoh T., Analysis of complex waveguide structure using the finite-difference time-domain method, Proc. MTT-S, pp. 697-700, (1994)