DISSIPATIVE IRREVERSIBILITY FROM NOSE'S REVERSIBLE MECHANICS

被引:50
作者
Hoover, W. G. [1 ,2 ]
Posch, H. A. [3 ]
Holian, B. L. [4 ]
Gillan, M. J. [5 ]
Mareschal, M. [6 ]
Massobrio, C. [7 ]
机构
[1] Univ Calif Davis, Dept Appl Sci, Livermore, CA 94550 USA
[2] Univ Calif Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[3] Univ Vienna, Inst Expt Phys, A-1090 Vienna, Austria
[4] Los Alamos Sci Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[5] Atom Energy Res Estab, Div Theoret Phys, Didcot OX11 0RA, Oxon, England
[6] Free Univ Brussels, B-1050 Brussels, Belgium
[7] CENS, Rech Met Phys Sect, F-91191 Gif Sur Yvette, France
基金
美国国家科学基金会; 美国能源部;
关键词
Irreversibility; reversibility; Hamiltonian mechanics; steady states; dissipation; entropy;
D O I
10.1080/08927028708080932
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nose's Hamiltonian mechanics makes possible the efficient simulation of irreversible flows of mass, momentum and energy. Such flows illustrate the paradox that reversible microscopic equations of motion underlie the irreversible behavior described by the second law of thermodynamics. This generic behavior of molecular many-body systems is illustrated here for the simplest possible system, with only one degree of freedom: a one-body Frenkel-Kontorova model for isothermal electronic conduction. This model system, described by Nose-Hoover Hamiltonian dynamics, exhibits several interesting features: (1) deterministic and reversible equations of motion; (2) Lyapunov instability, with phase-space offsets increasing exponentially with time; (3) limit cycles; (4) dissipative conversion of work (potential energy) into heat (kinetic energy); and (5) phase-space contraction, a characteristic feature of steady irreversible flows. The model is particularly instructive in illustrating and explaining a paradox associated with steady-state statistical mechanics: the Gibbs entropy of a nonequilibrium steady state decreases continuously to minus infinity.
引用
收藏
页码:79 / 86
页数:8
相关论文
共 24 条
[1]   SHEAR VISCOSITY OF THE HARD-SPHERE FLUID VIA NONEQUILIBRIUM MOLECULAR-DYNAMICS [J].
ERPENBECK, JJ .
PHYSICAL REVIEW LETTERS, 1984, 52 (15) :1333-1335
[2]   RESPONSE THEORY AS A FREE-ENERGY EXTREMUM [J].
EVANS, DJ .
PHYSICAL REVIEW A, 1985, 32 (05) :2923-2925
[3]   THE NOSE-HOOVER THERMOSTAT [J].
EVANS, DJ ;
HOLIAN, BL .
JOURNAL OF CHEMICAL PHYSICS, 1985, 83 (08) :4069-4074
[4]  
EVANS DJ, 1986, ANNU REV FLUID MECH, V18, P243
[5]   TRANSPORT IN THE FRENKEL-KONTOROVA MODEL .2. THE DIFFUSION-COEFFICIENT [J].
GILLAN, MJ ;
HOLLOWAY, RW .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1985, 18 (25) :4903-4921
[6]   TRANSPORT IN THE FRENKEL-KONTOROVA MODEL .1. DIFFUSION AND SINGLE-PARTICLE MOTION [J].
GILLAN, MJ .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1985, 18 (25) :4885-4902
[7]   TRANSPORT IN THE FRENKEL-KONTOROVA MODEL .3. THERMAL-CONDUCTIVITY [J].
GILLAN, MJ ;
HOLLOWAY, RW .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1985, 18 (30) :5705-5720
[8]   NONEQUILIBRIUM MOLECULAR-DYNAMICS STUDY OF SHEAR-FLOW IN SOFT DISKS [J].
HEYES, DM ;
MORRISS, GP ;
EVANS, DJ .
JOURNAL OF CHEMICAL PHYSICS, 1985, 83 (09) :4760-4766
[9]   SIMULATIONS OF VIBRATIONAL-RELAXATION IN DENSE MOLECULAR FLUIDS .1. METHODS [J].
HOLIAN, BL .
JOURNAL OF CHEMICAL PHYSICS, 1986, 84 (06) :3138-3146
[10]   NUMERICAL TEST OF THE LIOUVILLE EQUATION [J].
HOLIAN, BL ;
HOOVER, WG .
PHYSICAL REVIEW A, 1986, 34 (05) :4229-4237