NUMERICAL-ANALYSIS OF QUASI-NEWTONIAN FLOW OBEYING THE POWER LOW OR THE CARREAU FLOW

被引:83
作者
BARANGER, J [1 ]
NAJIB, K [1 ]
机构
[1] UNIV HASSAN 2,DEPT MATH,FAC SCI ELJADIDA,EL-JADIDA,MOROCCO
关键词
Subject classifications: AMS(MOS): 65N15; 76A05; CR:; G; 1.8;
D O I
10.1007/BF01385609
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove abstract error estimates for the approximation of the velocity and the pressure by a mixed FEM of quasi-Newtonian flows whose viscosity obeys the power law or the Carreau law. These estimates are optimal in some cases. They can be applied to most finite elements used for the solution of Stokes's problem. © 1990 Springer-Verlag.
引用
收藏
页码:35 / 49
页数:15
相关论文
共 15 条
[1]   ERROR-ESTIMATES FOR A MIXED FINITE-ELEMENT METHOD FOR A NON-NEWTONIAN FLOW [J].
BARANGER, J ;
GEORGET, P ;
NAJIB, K .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1987, 23 :415-421
[2]  
BERNARDI C, 1985, MATH COMPUT, V44, P71, DOI 10.1090/S0025-5718-1985-0771031-7
[3]   STABILITY OF FINITE-ELEMENTS UNDER DIVERGENCE CONSTRAINTS [J].
BOLAND, JM ;
NICOLAIDES, RA .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1983, 20 (04) :722-731
[4]  
BREZZI F, 1974, REV FR AUTOMAT INFOR, V8, P129
[5]  
CHOW SS, 1983, THESIS AUSTR NATIONA
[6]  
Ciarlet P. G., 2002, FINITE ELEMENT METHO
[7]  
CLEMENT P, 1975, REV FR AUTOMAT INFOR, V9, P77
[9]  
GEORGET P, 1985, THESIS U LYON, V1
[10]  
Girault V., 1986, FINITE ELEMENT METHO, V5