FAST LEAST-SQUARES ESTIMATION OF AMPLITUDE AND PHASE OF DAMPED COSINES

被引:1
作者
DEMEURE, CJ
机构
[1] Thomson-CSF, Division Télécommunications, 92231 Gennevilliers Cedex
关键词
Grammian matrix; least squares; QR and Cholesky factorization; Vandermonde matrix;
D O I
10.1016/0165-1684(90)90044-Y
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper we introduce a fast algorithm for computing the QR factors of the rectangular real matrix Vr, that represents a Vandermonde matrix 'in its real form'. This matrix arises when solving the overdetermined system of linear equations for estimating the amplitudes and phases of damped and phased cosines. The frequencies and damping factors are assumed known or estimated. The resulting exploits the special structure of the matrix Vr as well as the special structure of its Grammian VrTVr. The algorithm is an order of magnitude faster than standard QR algorithms based on Householder matrices. © 1990.
引用
收藏
页码:107 / 115
页数:9
相关论文
共 12 条
[1]  
Bartels, Stewart, Solution of the matrix equation AX + XB = C, Communications of the ACM, 15, 9, pp. 820-826, (1972)
[2]  
Demeure, Fast QR Factorization of Vandermonde matrices, Special Issue on Linear Systems and Control, 122-124, pp. 165-194, (1989)
[3]  
Gohberg, Kailath, Koltracht, Efficient solution of linear systems of equations with recursive structure, Linear Algebra Appl., 80, pp. 81-113, (1986)
[4]  
Golub, Nash, Van Loan, A Hessemberg-Schur method for the problem AX + XB = C, IEEE Transactions on Automatic Control, 24, 6, pp. 909-913, (1979)
[5]  
Golub, Van Loan, Matrix Computations, pp. 136-154, (1983)
[6]  
Heinig, Rost, Algebraic Methods for Toeplitz-like Matrices and Operators, pp. 155-159, (1984)
[7]  
Hildebrand, Introduction to Numerical Analysis, pp. 379-380, (1956)
[8]  
de Prony, Essai expérimental et analytique, J. de l'Ecole Polytechnique, Paris, 1, 2, pp. 24-76, (1975)
[9]  
Roy, Kailath, ESPRIT—Estimation of Signal Parameters via Rotational Invariance Techniques, IEEE Trans. Acoust. Speech Signal Process., 37, 7, pp. 984-995, (1989)
[10]  
Schmidt, Multiple emitter location and signal parameter estimation, Proc. RADC Spectrum Estimation Workshop, pp. 243-258, (1979)