ON THE INDEPENDENCE AND CHROMATIC-NUMBERS OF RANDOM REGULAR GRAPHS

被引:61
作者
FRIEZE, AM [1 ]
LUCZAK, T [1 ]
机构
[1] ADAM MICKIEWICZ UNIV,INST MATH,PL-61712 POZNAN,POLAND
关键词
D O I
10.1016/0095-8956(92)90070-E
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Gr denote a random r-regular graph with vertex set {1, 2, ..., n} and α(Gr) and χ(Gr) denote respectively its independence and chromatic numbers. We show that with probability going to 1 as n → ∞ respectively |δ(Gr) - 2n r(logr - log logr + 1 - log 2)|≤ γn r and |χ(Gr) - r 2 log r - 8r log logr (log)2| ≤ 8r log log r (log r)2 provided r = o(nθ), θ < 1 3, 0 < ε < 1, are constants, and r ≥ rε, where rε depends on ε only. © 1992.
引用
收藏
页码:123 / 132
页数:10
相关论文
共 14 条
[1]  
[Anonymous], 1967, TOHOKU MATH J 2 SERI, DOI DOI 10.2748/TMJ/1178243286
[2]   ASYMPTOTIC NUMBER OF LABELED GRAPHS WITH GIVEN DEGREE SEQUENCES [J].
BENDER, EA ;
CANFIELD, ER .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1978, 24 (03) :296-307
[3]   THE CHROMATIC NUMBER OF RANDOM GRAPHS [J].
BOLLOBAS, B .
COMBINATORICA, 1988, 8 (01) :49-55
[4]  
BOLLOBAS B, 1976, MATH PROC CAMBRIDGE, V80, P419, DOI 10.1017/S0305004100053056
[5]  
Bollobas B, 1980, EUR J COMBINAT, V1, P311
[6]  
Bollobas B., 1985, RANDOM GRAPHS
[7]  
BOLLOBAS B., 1988, C MATH SCI J BOLYAI, V52
[8]  
FRIEZE AM, IN PRESS DISCRETE MA
[9]   COLORING RANDOM GRAPHS [J].
GRIMMETT, GR ;
MCDIARMID, CJH .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1975, 77 (MAR) :313-324
[10]  
LUCZAK T, IN PRESS COMBINATORI