STRUCTURE OF ISOCITRATE DEHYDROGENASE WITH ALPHA-KETOGLUTARATE AT 2.7-ANGSTROM RESOLUTION - CONFORMATIONAL-CHANGES INDUCED BY DECARBOXYLATION OF ISOCITRATE

被引:48
作者
STODDARD, BL [1 ]
KOSHLAND, DE [1 ]
机构
[1] UNIV CALIF BERKELEY,DEPT MOLEC & CELLULAR BIOL,DIV BIOCHEM,229 STANLEY HALL,BERKELEY,CA 94720
关键词
D O I
10.1021/bi00087a009
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The structure of the isocitrate dehydrogenase (IDH) complex with bound alpha-ketoglutarate, Ca2+, and NADPH was solved at 2.7-angstrom resolution. The alpha-ketoglutarate binds in the active site at the same position and orientation as isocitrate, with a difference between the two bound molecules of about 0.8 angstrom. The Ca2+ metal is coordinated by alpha-ketoglutarate, three conserved aspartate residues, and a pair of water molecules. The largest motion in the active site relative to the isocitrate enzyme complex is observed for tyrosine 160, which originally forms a hydrogen bond to the labile carboxyl group of isocitrate and moves to form a new hydrogen bond to Asp 307 in the complex with alpha-ketoglutarate. This triggers a number of significant movements among several short loops and adjoining secondary structural elements in the enzyme, most of which participate in dimer stabilization and formation of the active-site cleft. These rearrangements are similar to the ligand-binding-induced movements observed in globins and insulin and serve as a model for an enzymatic mechanism which involves local shifts of secondary structural elements during turnover, rather than large-scale domain closures or loop transitions induced by substrate binding such as those observed in hexokinase or triosephosphate isomerase.
引用
收藏
页码:9317 / 9322
页数:6
相关论文
共 30 条
[1]   STRUCTURE OF LACTATE DEHYDROGENASE AT 2.8A RESOLUTION [J].
ADAMS, MJ ;
FORD, GC ;
KOEKOEK, R ;
LENTZ, PJ ;
MCPHERSON, A ;
ROSSMANN, MG ;
SMILEY, IE ;
SCHEVITZ, RW ;
WONACOTT, AJ .
NATURE, 1970, 227 (5263) :1098-+
[2]  
ALBER T, 1981, J BIOL CHEM, V256, P1356
[3]   STRUCTURE OF A COMPLEX BETWEEN YEAST HEXOKINASE-A AND GLUCOSE .2. DETAILED COMPARISONS OF CONFORMATION AND ACTIVE-SITE CONFIGURATION WITH THE NATIVE HEXOKINASE-B MONOMER AND DIMER [J].
BENNETT, WS ;
STEITZ, TA .
JOURNAL OF MOLECULAR BIOLOGY, 1980, 140 (02) :211-230
[4]   STRUCTURE OF A COMPLEX BETWEEN YEAST HEXOKINASE-A AND GLUCOSE .1. STRUCTURE DETERMINATION AND REFINEMENT AT 3.5 A RESOLUTION [J].
BENNETT, WS ;
STEITZ, TA .
JOURNAL OF MOLECULAR BIOLOGY, 1980, 140 (02) :183-209
[5]   REFINED CRYSTAL-STRUCTURE OF CYTOPLASMIC MALATE-DEHYDROGENASE AT 2.5-A RESOLUTION [J].
BIRKTOFT, JJ ;
RHODES, G ;
BANASZAK, LJ .
BIOCHEMISTRY, 1989, 28 (14) :6065-6081
[6]   CRYSTALLOGRAPHIC R-FACTOR REFINEMENT BY MOLECULAR-DYNAMICS [J].
BRUNGER, AT ;
KURIYAN, J ;
KARPLUS, M .
SCIENCE, 1987, 235 (4787) :458-460
[7]   ELECTROSTATIC AND STERIC CONTRIBUTIONS TO REGULATION AT THE ACTIVE-SITE OF ISOCITRATE DEHYDROGENASE [J].
DEAN, AM ;
KOSHLAND, DE .
SCIENCE, 1990, 249 (4972) :1044-1046
[8]  
DEAN AM, 1993, BIOCHEMISTRY-US, V32
[9]   CRYSTALLOGRAPHIC INVESTIGATIONS OF NICOTINAMIDE ADENINE-DINUCLEOTIDE BINDING TO HORSE LIVER ALCOHOL-DEHYDROGENASE [J].
EKLUND, H ;
SAMAMA, JP ;
JONES, TA .
BIOCHEMISTRY, 1984, 23 (25) :5982-5996
[10]  
EKLUND H, 1981, J MOL BIOL, V146, P561, DOI 10.1016/0022-2836(81)90047-4