WHY DOES ESCHERICHIA-COLI HAVE 2 PRIMARY PATHWAYS FOR SYNTHESIS OF GLUTAMATE

被引:94
作者
HELLING, RB
机构
关键词
D O I
10.1128/JB.176.15.4664-4668.1994
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Escherichia coli has two primary pathways for glutamate synthesis. The glutamine synthetase-glutamate synthase pathway is known to be essential for synthesis at low ammonium concentrations and for regulation of the glutamine pool, but the necessity for glutamate dehydrogenase (GDH) has been uncertain. The results of competition experiments between the wild type and a GDH-deficient mutant during nutrient-limited growth and of direct enzyme measurements suggest that GDH is used in glutamate synthesis when the cell is limited for energy (and carbon) but ammonium and phosphate are present in excess, while the glutamine synthetase-glutamate synthase pathway is used when the cell is not under energy limitation. The use of alternative routes for glutamate synthesis implies that the energy cost of biosynthesis may be less when energy is limited than when energy is unlimited.
引用
收藏
页码:4664 / 4668
页数:5
相关论文
共 35 条
[1]  
[Anonymous], 1990, PHYSL BACTERIAL CELL
[3]   REGULATION OF ESCHERICHIA-COLI GLNB, PRSA, AND SPEA BY THE PURINE REPRESSOR [J].
BIN, H ;
CHOI, KY ;
ZALKIN, H .
JOURNAL OF BACTERIOLOGY, 1993, 175 (11) :3598-3606
[4]   ENTERIC BACTERIA AND OSMOTIC-STRESS - INTRACELLULAR POTASSIUM GLUTAMATE AS A SECONDARY SIGNAL OF OSMOTIC-STRESS [J].
BOOTH, IR ;
HIGGINS, CF .
FEMS MICROBIOLOGY LETTERS, 1990, 75 (2-3) :239-246
[5]   CHARACTERIZATION OF THE CYTOPLASM OF ESCHERICHIA-COLI-K-12 AS A FUNCTION OF EXTERNAL OSMOLARITY - IMPLICATIONS FOR PROTEIN DNA INTERACTIONS INVIVO [J].
CAYLEY, S ;
LEWIS, BA ;
GUTTMAN, HJ ;
RECORD, MT .
JOURNAL OF MOLECULAR BIOLOGY, 1991, 222 (02) :281-300
[6]   ORIGINS OF THE OSMOPROTECTIVE PROPERTIES OF BETAINE AND PROLINE IN ESCHERICHIA-COLI K-12 [J].
CAYLEY, S ;
LEWIS, BA ;
RECORD, MT .
JOURNAL OF BACTERIOLOGY, 1992, 174 (05) :1586-1595
[7]   TRANSIENT ACCUMULATION OF POTASSIUM GLUTAMATE AND ITS REPLACEMENT BY TREHALOSE DURING ADAPTATION OF GROWING-CELLS OF ESCHERICHIA-COLI K-12 TO ELEVATED SODIUM-CHLORIDE CONCENTRATIONS [J].
DINNIBIER, U ;
LIMPINSEL, E ;
SCHMID, R ;
BAKKER, EP .
ARCHIVES OF MICROBIOLOGY, 1988, 150 (04) :348-357
[8]   CATION TRANSPORT IN ESCHERICHIA COLI .V. REGULATION OF CATION CONTENT [J].
EPSTEIN, W ;
SCHULTZ, SG .
JOURNAL OF GENERAL PHYSIOLOGY, 1965, 49 (02) :221-&
[9]   ROLE OF PHOSPHORYLATED METABOLIC INTERMEDIATES IN THE REGULATION OF GLUTAMINE-SYNTHETASE SYNTHESIS IN ESCHERICHIA-COLI [J].
FENG, JL ;
ATKINSON, MR ;
MCCLEARY, W ;
STOCK, JB ;
WANNER, BL ;
NINFA, AJ .
JOURNAL OF BACTERIOLOGY, 1992, 174 (19) :6061-6070
[10]  
HELLING RB, 1981, J GEN MICROBIOL, V123, P129