DYNAMIC REPRESENTATION FORMULAS AND FUNDAMENTAL-SOLUTIONS FOR PIEZOELECTRICITY

被引:87
作者
KHUTORYANSKY, NM
SOSA, H
机构
[1] Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia
基金
美国国家科学基金会;
关键词
D O I
10.1016/0020-7683(94)00308-J
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Representation formulas and fundamental solutions of the governing equations of transient piezoelectricity are obtained through a generalization of the reciprocal theorem and the plane wave transform method. It is shown that dynamic fundamental and singular solutions can be reduced to one-dimensional integral expressions by means of a slowness surface. The article provides the necessary mathematical foundations towards the development of the boundary element method for nonstationary, three-dimensional electroelastic problems.
引用
收藏
页码:3307 / 3325
页数:19
相关论文
共 12 条
[1]  
[Anonymous], 1988, ELECTROMAGNETOELASTI
[2]  
Balakirev M.K., 1982, WAVES PIEZOELECTRIC
[4]   GREEN-FUNCTIONS AND THE NONUNIFORM TRANSFORMATION PROBLEM IN A PIEZOELECTRIC MEDIUM [J].
CHEN, TY .
MECHANICS RESEARCH COMMUNICATIONS, 1993, 20 (03) :271-278
[5]   NUMERICAL EVALUATION OF DERIVATIVES OF THE ANISOTROPIC PIEZOELECTRIC GREEN-FUNCTIONS [J].
CHEN, TY ;
LIN, FZ .
MECHANICS RESEARCH COMMUNICATIONS, 1993, 20 (06) :501-506
[6]  
Gelfand I. M., 1964, GENERALIZED FUNCTION, V1
[7]  
John F., 1955, PLANE WAVES SPHERICA
[8]  
KHUTORYANSKY NM, 1985, PRIKL PROBL PROCH PL, V30, P23
[9]   A BOUNDARY INTEGRAL FORMULATION AND 2D FUNDAMENTAL SOLUTION FOR PIEZOELASTIC MEDIA [J].
LEE, JS ;
JIANG, LZ .
MECHANICS RESEARCH COMMUNICATIONS, 1994, 21 (01) :47-54
[10]  
Musgrave M. J. P., 1970, CRYSTAL ACOUSTICS