NEIGHBORHOOD UNIONS AND HAMILTON CYCLES

被引:16
作者
JACKSON, B [1 ]
机构
[1] UNIV AUCKLAND,DEPT MATH & STAT,AUCKLAND,NEW ZEALAND
关键词
D O I
10.1002/jgt.3190150409
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph on n vertices and N2(G) denote the minimum size of N(u) union N(upsilon) taken over all pairs of independent vertices u, upsilon of G. We show that if G is 3-connected and N2(G) greater-than-or-equal-to 1/2(n + 1), then G has a Hamilton cycle. We show further that if G is 2-connected and N2(G) greater-than-or-equal-to 1/2 (n + 3), then either G has a Hamilton cycle or else G belongs to one of three families of exceptional graphs.
引用
收藏
页码:443 / 451
页数:9
相关论文
共 7 条
[1]  
BROESMA HJ, GENERALIZATION ORES
[2]   NEIGHBORHOOD UNIONS AND HAMILTONIAN PROPERTIES IN GRAPHS [J].
FAUDREE, RJ ;
GOULD, RJ ;
JACOBSON, MS ;
SCHELP, RH .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1989, 47 (01) :1-9
[3]  
FAUDREE RJ, NEIGHBORHOOD UNIONS
[4]  
GOULD RJ, 1989, IN PRESS 2ND P INT C
[5]  
LINDQUESTER T, IN PRESS J GRAPH THE
[6]  
Ore O., 1960, AM MATH MON, V67, P55, DOI [10.2307/2308928, DOI 10.2307/2308928]
[7]   CYCLES AND CONNECTIVITY IN GRAPHS [J].
WATKINS, ME ;
MESNER, DM .
CANADIAN JOURNAL OF MATHEMATICS, 1967, 19 (06) :1319-&