HOW CHAOTIC IS CHAOS - CHAOTIC AND OTHER NOISY DYNAMICS IN THE FREQUENCY-DOMAIN

被引:24
作者
BUNOW, B
WEISS, GH
机构
[1] Division of Computer Research and Technology, National Institute of Health, Bethesda
关键词
D O I
10.1016/0025-5564(79)90039-7
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Spectral power densities and autocorrelation functions have been computed for several types of discrete dynamical systems: both chaotic and noisy. In some cases, chaotic dynamical systems can be distinguished from other types of dynamical systems by their appearance in the frequency domain. © 1979.
引用
收藏
页码:221 / 237
页数:17
相关论文
共 25 条
[1]  
BOX GEP, 1970, TIME SERIES ANAL FOR
[2]   PERIODICITY AND CHAOS IN COUPLED NON-LINEAR OSCILLATORS [J].
GOLLUB, JP ;
BRUNNER, TO ;
DANLY, BG .
SCIENCE, 1978, 200 (4337) :48-50
[3]  
GROSSMAN Z, 1975, INFORMATICA, V75, P3
[4]   DYNAMICS OF DENSITY DEPENDENT POPULATION MODELS [J].
GUCKENHEIMER, J ;
OSTER, G ;
IPAKTCHI, A .
JOURNAL OF MATHEMATICAL BIOLOGY, 1977, 4 (02) :101-147
[5]  
Hirsch MW., 1974, DIFF EQUAT+, DOI DOI 10.1016/S0079-8169(08)X6044-1
[6]   PERIOD 3 IMPLIES CHAOS [J].
LI, TY ;
YORKE, JA .
AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (10) :985-992
[7]  
LORENZ EN, 1964, J ATMOS SCI, V20, P130
[8]   OSCILLATION AND CHAOS IN PHYSIOLOGICAL CONTROL-SYSTEMS [J].
MACKEY, MC ;
GLASS, L .
SCIENCE, 1977, 197 (4300) :287-288
[9]  
MACKEY MC, 1977, BLOOD, V51, P941
[10]   BIOLOGICAL POPULATIONS WITH NONOVERLAPPING GENERATIONS - STABLE POINTS, STABLE CYCLES, AND CHAOS [J].
MAY, RM .
SCIENCE, 1974, 186 (4164) :645-647