SENSITIVITY OF CULTURED HUMAN EMBRYONIC CEREBRAL CORTICAL-NEURONS TO EXCITATORY AMINO ACID-INDUCED CALCIUM INFLUX AND NEUROTOXICITY

被引:48
作者
MATTSON, MP
RYCHLIK, B
YOU, JS
SISKEN, JE
机构
[1] UNIV KENTUCKY, MED CTR, DEPT ANAT & NEUROBIOL, LEXINGTON, KY 40536 USA
[2] UNIV KENTUCKY, MED CTR, DEPT IMMUNOL & MICROBIOL, LEXINGTON, KY 40536 USA
关键词
CALCIUM; CELL CULTURE; DEVELOPMENT; GLUTAMATE; HUMAN; NEURONAL DEATH; N-METHYL-D-ASPARTATE;
D O I
10.1016/0006-8993(91)91003-J
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Although there has been a large body of literature from animal studies concerning neuronal excitatory amino acid (EAA) receptors and their possible roles in brain development, function, and pathology, essentially no direct information on actions of EAAs in humans has previously been available. We now report on experiments in cell cultured human embryonic cerebral cortical neurons which directly addressed the actions of EAAs in the developing human brain. In cultures established from 14-week fetuses, neurons were insensitive to glutamate neurotoxicity during the first 30 days in culture. After 30 days in culture increasingly more neurons became vulnerable to glutamate acting at the N-methyl-D-aspartate and kainate type receptors. The development of calcium responses to glutamate (as measured with the calcium indicator dye fura-2) preceded sensitivity to excitotoxicity by several weeks in the human neurons. Glutamate-induced rises in intracellular calcium and neurotoxicity developed much more rapidly in rat cortical neurons. Studies of dynamic aspects of calcium responses to calcium ionophore A23187 in human and rat cortical neurons demonstrated a direct relation between calcium buffering ability and resistance to EAA neurotoxicity. Interestingly, the human neurons were better able to buffer a calcium load than were rat neurons, suggesting that species-specific and/or developmental stage-specific differences in calcium-buffering systems are likely to play roles in determining neuronal vulnerability to EAAs. These initial observations indicate that human cortical neurons become sensitive to EAAs during the prenatal period, and suggest that EAAs may play important roles in both normal human brain development and neurodegenerative processes.
引用
收藏
页码:97 / 106
页数:10
相关论文
共 36 条
[1]   STIMULATION OF THE N-METHYL-D-ASPARTATE RECEPTOR HAS A TROPHIC EFFECT ON DIFFERENTIATING CEREBELLAR GRANULE CELLS [J].
BALAZS, R ;
HACK, N ;
JORGENSEN, OS .
NEUROSCIENCE LETTERS, 1988, 87 (1-2) :80-86
[2]   GLUTAMATE RECOGNITION SITES IN HUMAN-FETAL BRAIN [J].
BARKS, JD ;
SILVERSTEIN, FS ;
SIMS, K ;
GREENAMYRE, JT ;
JOHNSTON, MV .
NEUROSCIENCE LETTERS, 1988, 84 (02) :131-136
[3]   REPLICATION OF THE NEUROCHEMICAL CHARACTERISTICS OF HUNTINGTONS-DISEASE BY QUINOLINIC ACID [J].
BEAL, MF ;
KOWALL, NW ;
ELLISON, DW ;
MAZUREK, MF ;
SWARTZ, KJ ;
MARTIN, JB .
NATURE, 1986, 321 (6066) :168-171
[4]  
BORLE AB, 1988, CALCIUM CELL FUNCTIO, V94, P88
[5]   GLUTAMATE NEUROTOXICITY AND DISEASES OF THE NERVOUS-SYSTEM [J].
CHOI, DW .
NEURON, 1988, 1 (08) :623-634
[6]  
CHOI DW, 1988, J NEUROSCI, V8, P185
[7]   N-METHYL-D-ASPARTATE RECEPTOR ANTAGONIST DESEGREGATES EYE-SPECIFIC STRIPES [J].
CLINE, HT ;
DEBSKI, EA ;
CONSTANTINEPATON, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (12) :4342-4345
[8]   CONTROLLED INDUCTION OF PAIRED HELICAL FILAMENTS OF THE ALZHEIMER TYPE IN CULTURED HUMAN NEURONS, BY GLUTAMATE AND ASPARTATE [J].
DEBONI, U ;
MCLACHLAN, DRC .
JOURNAL OF THE NEUROLOGICAL SCIENCES, 1985, 68 (2-3) :105-118
[9]   EXCITATORY AMINO-ACIDS AND ALZHEIMERS-DISEASE [J].
GREENAMYRE, JT ;
YOUNG, AB .
NEUROBIOLOGY OF AGING, 1989, 10 (05) :593-602
[10]  
GREENAMYRE T, 1987, J NEUROSCI, V7, P1022