SELF-CONSISTENT CHECK OF THE VALIDITY OF GIBBS CALCULUS USING DYNAMICAL VARIABLES

被引:42
作者
ESCANDE, D
KANTZ, H
LIVI, R
RUFFO, S
机构
[1] CTR ETUD CADARACHE,DRFC,F-13108 ST PAUL DURANCE,FRANCE
[2] BERG UNIV GESAMTHSCH WUPERTAL GAUSS,FACHBEREICH PHYS,D-42097 WUPPERTAL 1,GERMANY
[3] UNIV BOLOGNA,DIPARTIMENTO FIS,I-40126 BOLOGNA,ITALY
[4] INFN,I-40126 BOLOGNA,ITALY
[5] UNIV FIRENZE,DIPARTIMENTO ENERGET,I-50123 FLORENCE,ITALY
[6] INFN,FLORENCE,ITALY
关键词
GIBBS ENSEMBLES; COUPLED ROTATORS; RESONANCE OVERLAP; LARGE-SCALE CHAOS; RELAXATION TO EQUILIBRIUM;
D O I
10.1007/BF02188677
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The high- and low-energy limits of a chain of coupled rotators are integrable and correspond respectively to a set of free rotators and to a chain of harmonic oscillators. For intermediate values of the energy, numerical calculations show the agreement of finite time averages of physical observables with their Gibbsian estimate. The boundaries between the two integrable limits and the statistical domain are analytically computed using the Gibbsian estimates of dynamical observables. For large energies the geometry of nonlinear resonances enables the definition of relevant 1.5-degree-of-freedom approximations of the dynamics. They provide resonance overlap parameters whose Gibbsian probability distribution may be computed. Requiring the support of this distribution to be right above the large-scale stochasticity threshold of the 1.5-degree-of-freedom dynamics yields the boundary at the large-energy limit. At the low-energy limit, the boundary is shown to correspond to the energy where the specific heat departs from that of the corresponding harmonic chain.
引用
收藏
页码:605 / 626
页数:22
相关论文
共 17 条
  • [1] ARNOLD VI, 1964, DOKL AKAD NAUK SSSR+, V156, P9
  • [2] NUMERICAL INVESTIGATIONS ON A CHAIN OF WEAKLY COUPLED ROTATORS IN THE LIGHT OF CLASSICAL PERTURBATION-THEORY
    BENETTIN, G
    GALGANI, L
    GIORGILLI, A
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1985, 89 (02): : 103 - 119
  • [3] CLASSICAL PERTURBATION-THEORY FOR SYSTEMS OF WEAKLY COUPLED ROTATORS
    BENETTIN, G
    GALGANI, L
    GIORGILLI, A
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1985, 89 (02): : 89 - 102
  • [4] CHIERCHIA L, 1992, CARR1592 REP
  • [5] UNIVERSAL INSTABILITY OF MANY-DIMENSIONAL OSCILLATOR SYSTEMS
    CHIRIKOV, BV
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1979, 52 (05): : 263 - 379
  • [6] CICCOTI G, 1987, SIMULATION LIQUIDS S
  • [7] CICCOTTI G, 1986, MOL DYNAMICS SIMULAT
  • [8] ELSKENS Y, COMMUNICATION
  • [9] ELSKENS Y, 1992, PHYSICA D, V62, P66
  • [10] Escande D.F., 1985, PHYS REP, V121, P166