MODEL VALIDATION TESTS FOR MULTIVARIABLE NONLINEAR MODELS INCLUDING NEURAL NETWORKS

被引:60
作者
BILLINGS, SA [1 ]
ZHU, QM [1 ]
机构
[1] UNIV BRIGHTON,DEPT MECH & MFG ENGN,BRIGHTON BN2 4GJ,E SUSSEX,ENGLAND
关键词
D O I
10.1080/00207179508921566
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A fast and concise MIMO nonlinear model validity test procedure is derived, based on higher order correlation functions, to form a global-to-local hierarchical validation diagnosis of identified MIMO linear and nonlinear models. The new procedure is applied to four MIMO nonlinear system models including a neural network training example, to demonstrate the effectiveness of the tests.
引用
收藏
页码:749 / 766
页数:18
相关论文
共 15 条
[1]   IDENTIFICATION OF MIMO NON-LINEAR SYSTEMS USING A FORWARD-REGRESSION ORTHOGONAL ESTIMATOR [J].
BILLINGS, SA ;
CHEN, S ;
KORENBERG, MJ .
INTERNATIONAL JOURNAL OF CONTROL, 1989, 49 (06) :2157-2189
[2]   STRUCTURE DETECTION AND MODEL VALIDITY TESTS IN THE IDENTIFICATION OF NON-LINEAR SYSTEMS [J].
BILLINGS, SA ;
VOON, WSF .
IEE PROCEEDINGS-D CONTROL THEORY AND APPLICATIONS, 1983, 130 (04) :193-199
[3]   EXTENDED MODEL SET, GLOBAL DATA AND THRESHOLD-MODEL IDENTIFICATION OF SEVERELY NON-LINEAR SYSTEMS [J].
BILLINGS, SA ;
CHEN, S .
INTERNATIONAL JOURNAL OF CONTROL, 1989, 50 (05) :1897-1923
[4]   NONLINEAR MODEL VALIDATION USING CORRELATION TESTS [J].
BILLINGS, SA ;
ZHU, QM .
INTERNATIONAL JOURNAL OF CONTROL, 1994, 60 (06) :1107-1120
[5]  
BILLINGS SA, 1983, INT J CONTOL, V44, P235
[6]   PROBLEM OF AMBIGUITIES IN MAXIMUM LIKELIHOOD IDENTIFICATION [J].
BOHLIN, T .
AUTOMATICA, 1971, 7 (02) :199-&
[7]  
BOHLIN T, 1971, AUTOMATICA, V14, P137
[8]  
Box G.E.P., 1976, TIME SERIES ANAL
[9]  
Box G. E. P., 1970, J AM STAT ASS, V(1st), DOI [10.2307/2284333, DOI 10.1080/01621459.1970.10481180]
[10]   RECURSIVE HYBRID ALGORITHM FOR NONLINEAR-SYSTEM IDENTIFICATION USING RADIAL BASIS FUNCTION NETWORKS [J].
CHEN, S ;
BILLINGS, SA ;
GRANT, PM .
INTERNATIONAL JOURNAL OF CONTROL, 1992, 55 (05) :1051-1070