A PROJECTION AND CONTRACTION METHOD FOR A CLASS OF LINEAR COMPLEMENTARITY-PROBLEMS AND ITS APPLICATION IN CONVEX QUADRATIC-PROGRAMMING

被引:126
作者
HE, BS
机构
[1] Institut für Angewandte Mathematik und Statistik, Universität Würzburg, Würzburg, 8700, Am Hubland
关键词
PROJECTION; FEJER-CONTRACTION; LINEAR COMPLEMENTARITY PROBLEM; LINEAR PROGRAMMING; CONVEX QUADRATIC PROGRAMMING;
D O I
10.1007/BF01182323
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we propose a new iterative method for solving a class of linear complementarity problems: u greater-than-or-equal-to 0, Mu + q greater-than-or-equal-to 0, u(T)(Mu + q) = 0, where M is a given l x l positive semidefinite matrix (not necessarily symmetric) and q is a given l-vector. The method makes two matrix-vector multiplications and a trivial projection onto the nonnegative orthant at each iteration, and the Euclidean distance of the iterates to the solution set monotonously converges to zero. The main advantages of the method presented are its simplicity, robustness, and ability to handle large problems with any start point. It is pointed out that the method may be used to solve general convex quadratic programming problems. Preliminary numerical experiments indicate that this method may be very efficient for large sparse problems.
引用
收藏
页码:247 / 262
页数:16
相关论文
共 34 条
[2]  
[Anonymous], 1958, STUDIES LINEAR NONLI
[3]  
[Anonymous], 2003, LINEAR PROGRAMMING
[4]  
Beale E.M., 1959, NAV RES LOG, V6, P227, DOI DOI 10.1002/NAV.3800060305
[5]   GOLDSTEIN-LEVITIN-POLYAK GRADIENT PROJECTION METHOD [J].
BERTSEKAS, DP .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1976, 21 (02) :174-183
[6]   EQUIVALENCE OF SOME QUADRATIC-PROGRAMMING ALGORITHMS [J].
BEST, MJ .
MATHEMATICAL PROGRAMMING, 1984, 30 (01) :71-87
[7]  
Blum E., 1975, ECONOMETRICS OPERATI
[8]  
Cottle R. W., 1968, LINEAR ALGEBRA APPL, V1, P103, DOI DOI 10.1016/0024-3795(68)90052-9
[9]  
Demyanov Vladimir Fedorovich, 1972, USSR COMP MATH MATH, V12, P11, DOI DOI 10.1016/0041-5553(72)90002-X