GENERALIZED DESCENT METHODS FOR ASYMMETRIC SYSTEMS OF EQUATIONS

被引:12
作者
HAMMOND, JH [1 ]
MAGNANTI, TL [1 ]
机构
[1] MIT,ALFRED P SLOAN SCH MANAGEMENT,CAMBRIDGE,MA 02139
关键词
COMPUTER PROGRAMMING - Algorithms - MATHEMATICAL PROGRAMMING; NONLINEAR;
D O I
10.1287/moor.12.4.678
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider generalizations of the steepest descent algorithm for solving asymmetric systems of equations. We first show that if the system is linear and is defined by the matrix M, then the method converges if M**2 is positive definite. We also establish easy to verify conditions on the matrix M that ensure that M**2 is positive definite, and develop a scaling procedure that extends the class of matrices that satisfy the convergence conditions. In addition, we establish a local convergence result for nonlinear systems defined by uniformly monotone maps, and discuss a class of general descent methods. All of the methods that we consider reduce to standard nonlinear programming algorithms.
引用
收藏
页码:678 / 699
页数:22
相关论文
共 25 条
  • [1] ON CONVERGENCE OF THE PIES ALGORITHM FOR COMPUTING EQUILIBRIA
    AHN, BH
    HOGAN, WW
    [J]. OPERATIONS RESEARCH, 1982, 30 (02) : 281 - 300
  • [2] [Anonymous], 1971, COMPUTATIONAL METHOD
  • [3] ANSTREICHER K, 1984, COMMUNICATION
  • [4] Auslender A., 1976, OPTIMISATION METHODE
  • [5] Ballantine C. S., 1975, LINEAR MULTILINEAR A, V3, P169
  • [6] Beckmann M., 1956, STUDIES EC TRANSPORT
  • [7] Bertsekas D. P., 1982, CONSTRAINED OPTIMIZA
  • [8] Cauchy A., 1847, CR HEBD ACAD SCI, V25, P536, DOI DOI 10.1017/CBO9780511702396.063
  • [9] Courant R., 1943, B AM MATH SOC, V49, P1, DOI DOI 10.1090/S0002-9904-1943-07818-4
  • [10] Curry HB., 1944, Q APPL MATH, V2, P258, DOI DOI 10.1090/QAM/10667