THE SEGMENTAL K-MEANS ALGORITHM FOR ESTIMATING PARAMETERS OF HIDDEN MARKOV-MODELS

被引:208
作者
JUANG, BH
RABINER, LR
机构
[1] AT&T Bell Laboratories, Murray Hill
来源
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING | 1990年 / 38卷 / 09期
关键词
D O I
10.1109/29.60082
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Statistical analysis techniques using hidden Markov models have found widespread use in many problem areas. This correspondence discusses and documents a parameter estimation algorithm for data sequence modeling involving hidden Markov models. The algorithm which we call the segmental K-means method uses the state-optimized joint likelihood for the observation data and the underlying Markovian state sequence as the objective function for estimation. We prove the convergence of the algorithm and compare it with the traditional Baum-Welch reestimation method. We also point out the increased flexibility this algorithm offers in the general speech modeling framework. © 1990 IEEE
引用
收藏
页码:1639 / 1641
页数:3
相关论文
共 15 条