THE CENTER MANIFOLD AND BIFURCATIONS OF DAMPED AND DRIVEN SINE-GORDON BREATHERS

被引:15
作者
GRAUER, R
BIRNIR, B
机构
[1] UNIV CALIF SANTA BARBARA, DEPT MATH, SANTA BARBARA, CA 93107 USA
[2] UNIV CALIF SANTA BARBARA, INST NONLINEAR SCI, SANTA BARBARA, CA 93107 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/0167-2789(92)90022-F
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The generic bifurcations of breathers in the damped and driven sine-Gordon equation are investigated both numerically and analytically. The linear stability analysis and information from periodic spectral theory suggest that three modes are relevant for the system. They correspond to frequency and (temporal) phase changes and to the flat pendulum. Using these modes (nonautonomous) amplitude equations are derived and compared with numerical simulations of the perturbed sine-Gordon equation.
引用
收藏
页码:165 / 184
页数:20
相关论文
共 30 条
[1]  
Ablowitz M. J., 1981, SOLITONS INVERSE SCA
[2]   METHOD FOR SOLVING SINE-GORDON EQUATION [J].
ABLOWITZ, MJ ;
KAUP, DJ ;
NEWELL, AC ;
SEGUR, H .
PHYSICAL REVIEW LETTERS, 1973, 30 (25) :1262-1264
[3]  
BACKLUND AV, 1880, MATH ANN, V17, P285
[4]  
BARONE A, 1982, PHYSICS APPLICATIONS
[7]  
BIRNIR B, 1991, RH0591 PREPR
[8]  
BIRNIR B, 1990, NONEXISTENCE BREATHE
[9]   A QUASI-PERIODIC ROUTE TO CHAOS IN A NEAR-INTEGRABLE PDE [J].
BISHOP, AR ;
FOREST, MG ;
MCLAUGHLIN, DW ;
OVERMAN, EA .
PHYSICA D, 1986, 23 (1-3) :293-328
[10]  
Carr J., 1981, APPL CTR MANIFOLD TH