MAXIMAL HYPERSURFACES IN STATIONARY ASYMPTOTICALLY FLAT SPACETIMES

被引:61
作者
CHRUSCIEL, PT
WALD, RM
机构
[1] UNIV CHICAGO,ENRICO FERMI INST,CHICAGO,IL 60637
[2] UNIV CHICAGO,DEPT PHYS,CHICAGO,IL 60637
关键词
D O I
10.1007/BF02101463
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Existence of maximal hypersurfaces and of foliations by maximal hypersurfaces is proven in two classes of asymptotically flat spacetimes which possess a one parameter group of isometries whose orbits are timelike ''near infinity.'' The first class consists of strongly causal asymptotically flat spacetimes which contain no ''black hole or white hole'' (but may contain ''ergoregions'' where the Killing orbits fail to be timelike). The second class of spacetimes possess a black hole and a white hole, with the black and white hole horizons intersecting in a compact 2-surface S.
引用
收藏
页码:561 / 604
页数:44
相关论文
共 24 条
[1]   ISOMETRIES COMPATIBLE WITH ASYMPTOTIC FLATNESS AT NULL INFINITY - COMPLETE DESCRIPTION [J].
ASHTEKAR, A ;
XANTHOPOULOS, BC .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (10) :2216-2222
[2]   4 LAWS OF BLACK HOLE MECHANICS [J].
BARDEEN, JM ;
CARTER, B ;
HAWKING, SW .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1973, 31 (02) :161-170
[3]   REGULARITY OF VARIATIONAL MAXIMAL SURFACES [J].
BARTNIK, R .
ACTA MATHEMATICA, 1988, 161 (3-4) :145-181
[4]   ON MAXIMAL SURFACES IN ASYMPTOTICALLY FLAT SPACE-TIMES [J].
BARTNIK, R ;
CHRUSCIEL, PT ;
MURCHADHA, NO .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 130 (01) :95-109
[5]   EXISTENCE OF MAXIMAL SURFACES IN ASYMPTOTICALLY FLAT SPACETIMES [J].
BARTNIK, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (02) :155-175
[6]   ON THE MULTIPOLE EXPANSION FOR STATIONARY SPACE-TIMES [J].
BEIG, R ;
SIMON, W .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1981, 376 (1765) :333-341
[7]  
CARTER B, 1973, BLACK HOLE EQUILIBRI
[8]  
CHRISTODOULOU D, 1981, COMMUN MATH PHYS, V80, P27
[9]   ON COMPLETENESS OF ORBITS OF KILLING VECTOR-FIELDS [J].
CHRUSCIEL, PT .
CLASSICAL AND QUANTUM GRAVITY, 1993, 10 (10) :2091-2101