STRUCTURE OF LAMINAR JUNCTURE FLOWS

被引:78
作者
VISBAL, MR
机构
[1] Flight Dynamics Directorate, Wright Research and Development Center, Wright-Patterson Air Force Base, OH
关键词
D O I
10.2514/3.10732
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
A computational study of both steady and periodic laminar horseshoe vortex flows generated upstream of a cylinder/flat plate juncture is presented. The flowfields are simulated using the full three-dimensional unsteady Navier-Stokes equations and a time-accurate implicit algorithm. A new type of laminar horseshoe vortex topology is identified. For the case of a single primary vortex, this new topology is found to be independent of the computational grid and is also supported by recent experimental flow visualizations. The flat plate skin-friction portraits corresponding to the new and to the standard horseshoe vortex topologies are equivalent, pointing out the nonunique relation between the wall limiting streamline pattern and the three-dimensional flow above the plate. For the new topology, the foremost line of coalescense is an attachment rather than a separation line. This unusual feature illustrates the fact that convergence of skin-friction lines is a necessary but not sufficient condition for separation. As the Reynolds number increases, the flow topology evolves from a single to multiple primary horseshoe vortices, in agreement with experimental observations. At least two different types of triple horseshoe vortex systems are shown to be possible. Above a certain value of the Reynolds number, the juncture flow becomes unsteady and periodic at a frequency that increases with Reynolds number. The unsteady horseshoe vortex process upstream of the cylinder is found in qualitative agreement with experiment. Horseshoe vortices are periodically generated and convected toward the juncture. Vorticity intensification by vortex stretching, and the eruption of vorticity from the plate surface are observed.
引用
收藏
页码:1273 / 1282
页数:10
相关论文
共 26 条