FOURIER-ANALYSIS OF RELAXED INCOMPLETE FACTORIZATION PRECONDITIONERS

被引:20
作者
CHAN, TF
机构
来源
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING | 1991年 / 12卷 / 03期
关键词
INCOMPLETE FACTORIZATIONS; PRECONDITIONERS; FOURIER ANALYSIS; CONDITIONER NUMBERS;
D O I
10.1137/0912035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fourier analysis is used to study the behavior of a class of incomplete factorization preconditioners for elliptic problems, which blends the classical ILU and MILU preconditioners via a scalar relaxation parameter alpha is-an-element-of [0, 1]. An expression is obtained for the eigenvalues of the preconditioned system for a model Poisson problem with periodic boundary conditions, which yields information on both the condition number K (alpha) and the eigendistribution of the preconditioned system. An optimal value is derived for alpha and it is shown that K (alpha-opt) = O(h-1). The Fourier results agree extremely well with numerical results for the model Poisson problem with Dirichlet boundary conditions, even though the Fourier analysis is not exact for this problem. For example, they predict the sensitive behavior near alpha = 1 (MILU). Finally, it is shown that the relaxed methods are closely related to the classical "modified" ILU (MILU) method.
引用
收藏
页码:668 / 680
页数:13
相关论文
共 11 条
[1]  
ASCHCRAFT C, 1988, SIAM J SCI STAT COMP, V9, P122
[2]   ON THE EIGENVALUE DISTRIBUTION OF A CLASS OF PRECONDITIONING METHODS [J].
AXELSSON, O ;
LINDSKOG, G .
NUMERISCHE MATHEMATIK, 1986, 48 (05) :479-498
[3]   ON THE RATE OF CONVERGENCE OF THE PRECONDITIONED CONJUGATE-GRADIENT METHOD [J].
AXELSSON, O ;
LINDSKOG, G .
NUMERISCHE MATHEMATIK, 1986, 48 (05) :499-523
[4]  
AXELSSON O, 1972, BIT, V13, P443, DOI 10.1007/BF01932955
[5]  
Axelsson O., 1984, FINITE ELEMENT SOLUT
[6]   ON AXELSSON PERTURBATIONS [J].
BEAUWENS, R .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1985, 68 (JUL) :221-242
[7]   FOURIER-ANALYSIS OF ITERATIVE METHODS FOR ELLIPTIC PROBLEMS [J].
CHAN, TF ;
ELMAN, HC .
SIAM REVIEW, 1989, 31 (01) :20-49
[8]   AN APPROXIMATE FACTORIZATION PROCEDURE FOR SOLVING SELF-ADJOINT ELLIPTIC DIFFERENCE EQUATIONS [J].
DUPONT, T ;
KENDALL, RP ;
RACHFORD, HH .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1968, 5 (03) :559-&
[9]  
Gustafsson I., 1978, BIT (Nordisk Tidskrift for Informationsbehandling), V18, P142, DOI 10.1007/BF01931691
[10]  
MEYERINK JA, 1977, MATH COMPUT, V31, P148