GLOBAL EXISTENCE FOR NON-LINEAR WAVE-EQUATIONS

被引:285
作者
KLAINERMAN, S
机构
关键词
D O I
10.1002/cpa.3160330104
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:43 / 101
页数:59
相关论文
共 28 条
[1]  
ARNOLD VI, 1963, USP MAT NAUK 5, V18
[2]   EINSTEIN EVOLUTION EQUATIONS AS A FIRST-ORDER QUASILINEAR SYMMETRIC HYPERBOLIC SYSTEM .1. [J].
FISCHER, AE ;
MARSDEN, JE .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1972, 28 (01) :1-&
[3]   SYMMETRIC HYPERBOLIC LINEAR DIFFERENTIAL EQUATIONS [J].
FRIEDRICHS, KO .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1954, 7 (02) :345-392
[4]  
Gromov M.L., 1970, USPEHI MAT NAUK, V25, P1
[5]  
HAMILTON R, 1974, INVERSE FUNCTION THE
[6]  
HORMANDER L, 1976, ARCH RATION MECH AN, V62, P1, DOI 10.1007/BF00251855
[7]  
Hormander L., 1977, IMPLICIT FUNCTION TH
[8]   IMPLICIT FUNCTION THEOREMS AND ISOMETRIC EMBEDDINGS [J].
JACOBOWITZ, H .
ANNALS OF MATHEMATICS, 1972, 95 (02) :191-+
[9]   FORMATION OF SINGULARITIES IN ONE-DIMENSIONAL NONLINEAR-WAVE PROPAGATION [J].
JOHN, F .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1974, 27 (03) :377-405
[10]   DELAYED SINGULARITY FORMATION IN SOLUTIONS OF NONLINEAR-WAVE EQUATIONS IN HIGHER DIMENSIONS [J].
JOHN, F .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1976, 29 (06) :649-682