MECHANISM OF THE REACTION CATALYZED BY MANDELATE RACEMASE .3. ASYMMETRY IN REACTIONS CATALYZED BY THE H297N MUTANT

被引:80
作者
LANDRO, JA
KALLARAKAL, AT
RANSOM, SC
GERLT, JA
KOZARICH, JW
NEIDHART, DJ
KENYON, GL
机构
[1] UNIV MARYLAND,DEPT CHEM & BIOCHEM,COLLEGE PK,MD 20742
[2] ABBOTT LABS,PROT CRYSTALLOG LAB,ABBOTT PK,IL 60064
[3] UNIV CALIF SAN FRANCISCO,SCH PHARM,DEPT PHARMACEUT CHEM,SAN FRANCISCO,CA 94143
关键词
D O I
10.1021/bi00102a020
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The two preceding papers [Powers, V. M., Koo, C. W., Kenyon, G. L., Gerlt, J. A., & Kozarich, J. W. (1991) Biochemistry (first paper of three in this issue); Neidhart, D. J., Howell, P. L., Petsko, G. A., Powers, V. M., Li, R., Kenyon, G. L., & Gerlt, J. A. (1991) Biochemistry (second paper of three in this issue)] suggest that the active site of mandelate racemase (MR) contains two distinct general acid/base catalysts: Lys 166, which abstracts the alpha-proton from (S)-mandelate, and His 297, which abstracts the alpha-proton from (R)-mandelate. In this paper we report on the properties of the mutant of MR in which His 297 has been converted to asparagine by site-directed mutagenesis (H297N). The structure of H297N, solved by molecular replacement at 2.2-angstrom resolution, reveals that no conformational alterations accompany the substitution. As expected, H297N has no detectable MR activity. However, H297N catalyzes the stereospecific elimination of bromide ion from racemic p-(bromomethyl)mandelate to give p-(methyl)-benzoylformate in 45% yield at a rate equal to that measured for wild-type enzyme; the unreacted p-(bromomethyl)mandelate is recovered as (R)-p-(hydroxymethyl)mandelate. At pD 7.5, H297N catalyzes the stereospecific exchange of the alpha-proton of (S)- but not (R)-mandelate with D2O solvent at a rate 3.3-fold less than that observed for incorporation of solvent deuterium into (S)-mandelate catalyzed by wild-type enzyme. The pD dependence of the rate of the exchange reaction catalyzed by H297N reveals a pK(a) of 6.4 in D2O, which is assigned to Lys 166. These observations provide persuasive evidence that the reaction catalyzed by MR does, in fact, proceed via a two-base mechanism in which Lys 166 abstracts the alpha-proton from (S)-mandelate and His 297 abstracts the alpha-proton from (R)-mandelate. Moreover, the facile exchange of solvent deuterium into (S)-mandelate catalyzed by H297N demonstrates the formation of a transiently stable intermediate. The rate of this exchange reaction and the measured pK(a) value of Lys 166 suggests that the pK(a) of the alpha-proton of (S)-mandelate in the active site of H297N is less-than-or-equal-to 15 in contrast to the value of 22 recently reported for mandelic acid in solution [Chiang, Y., Kresge, A. J., P. Pruszynski, P., Schepp, N. P., & Wirz, J. (1990) Angew. Chem. Int., Ed. Engl. 29, 792]. Since the rates of elimination of bromide ion from p-(bromomethyl)mandelate and of exchange of the alpha-proton of mandelate catalyzed by wild-type enzyme are nearly identical with those observed for the H297N, an intermediate is also presumed to lie on the reaction pathway for the racemization reaction catalyzed by wild-type enzyme. These studies demonstrate the power of site-directed mutagenesis in providing otherwise inaccessible detail about the mechanism of an enzyme-catalyzed reaction.
引用
收藏
页码:9274 / 9281
页数:8
相关论文
共 20 条