EFFICIENT VLSI PARALLEL ALGORITHM FOR DELAUNAY TRIANGULATION ON ORTHOGONAL TREE NETWORK IN 2-DIMENSIONS AND 3-DIMENSIONS

被引:9
作者
SAXENA, S [1 ]
BHATT, PCP [1 ]
PRASAD, VC [1 ]
机构
[1] INDIAN INST TECHNOL, DEPT ELECT ENGN, NEW DELHI 110016, INDIA
关键词
Algorithms; computational geometry; Delaunay triangulation; orthogonal tree network; parallel computing; Thompson's model; VLSI complexity;
D O I
10.1109/12.48871
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this correspondence, a parallel algorithm for two and three-dimensional Delaunay triangulation on an orthogonal tree network is described. The worst case time complexity of this algorithm is O(log2 N) in two dimensions and O(m1/2 log N) in three dimensions with N input points and m as the number of tetrahedra in triangulation. The AT2 VLSI complexity on Thompson's logarithmic delay model is O(N2 log6 N) in two dimensions and O(m2N log4 N) in three dimensions. © 1990 IEEE
引用
收藏
页码:400 / 404
页数:5
相关论文
共 19 条
[1]  
AGGARWAL A, 1987, PARALLAL COMPUTATION
[2]  
ATALLAH MJ, 1987, CASCADING DIVIDE CON
[3]   GEOMETRIC STRUCTURES FOR 3-DIMENSIONAL SHAPE REPRESENTATION [J].
BOISSONNAT, JD .
ACM TRANSACTIONS ON GRAPHICS, 1984, 3 (04) :266-286
[4]  
Cavendish J. C., 1974, International Journal for Numerical Methods in Engineering, V8, P679, DOI 10.1002/nme.1620080402
[5]   AN O(N LOG N) MINIMAL SPANNING TREE ALGORITHM FOR N-POINTS IN THE PLANE [J].
CHANG, RC ;
LEE, RCT .
BIT, 1986, 26 (01) :7-16
[6]  
CHOW A, 1980, THESIS U ILLINOIS UR
[7]  
DADOUN D, 1987, P ACM S COMPUTATIONA, P205
[8]  
EDELSBRUNER H, 1987, ALGORITHMS COMBINATO
[9]  
FIELD DA, 1986, P 2 ANN S COMP GEOM, P246
[10]   PRIMITIVES FOR THE MANIPULATION OF GENERAL SUBDIVISIONS AND THE COMPUTATION OF VORONOI DIAGRAMS [J].
GUIBAS, L ;
STOLFI, J .
ACM TRANSACTIONS ON GRAPHICS, 1985, 4 (02) :74-123