ANALYTICAL SOLUTION TO THE QUANTUM-FIELD THEORY OF SELF-PHASE MODULATION WITH A FINITE RESPONSE-TIME

被引:70
作者
BOIVIN, L [1 ]
KARTNER, FX [1 ]
HAUS, HA [1 ]
机构
[1] MIT,ELECTR RES LAB,CAMBRIDGE,MA 02139
关键词
D O I
10.1103/PhysRevLett.73.240
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The quantum theory of a field in 1+1 dimensions coupled to localized oscillators is developed. The solution to the Heisenberg equation for the field is given in closed form. It is shown that the nonlinearity of the medium is inevitably accompanied by phase noise of the field. This noise explains the preferential growth of the Stokes wave for short propagation distances.
引用
收藏
页码:240 / 243
页数:4
相关论文
共 10 条
[1]  
Agrawal GP., 2019, NONLINEAR FIBER OPTI, DOI 10.1016/C2018-0-01168-8
[2]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[3]   EXACT SOLUTION FOR QUANTUM SELF-PHASE MODULATION [J].
BLOW, KJ ;
LOUDON, R ;
PHOENIX, SJD .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1991, 8 (08) :1750-1756
[4]   THE EXCHANGE ALGEBRA FOR ZAMOLODCHIKOV AND FATEEV PARAFERMIONIC THEORIES [J].
BOIVIN, L ;
SAINTAUBIN, Y .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (16) :3895-3905
[5]   TIME-DEPENDENT CHERN-SIMONS SOLITONS AND THEIR QUANTIZATION [J].
JACKIW, R ;
PI, SY .
PHYSICAL REVIEW D, 1991, 44 (08) :2524-2532
[6]   QUANTUM PROPAGATION IN A KERR MEDIUM - LOSSLESS, DISPERSIONLESS FIBER [J].
JONECKIS, LG ;
SHAPIRO, JH .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1993, 10 (06) :1102-1120
[7]   CLASSICAL AND QUANTUM DYNAMICS OF A PULSE IN A DISPERSIONLESS NONLINEAR FIBER [J].
KARTNER, FX ;
JONECKIS, L ;
HAUS, HA .
QUANTUM OPTICS, 1992, 4 (06) :379-396
[8]  
KARTNER FX, IN PRESS J OPT SOC B
[9]   NUMBER-PHASE MINIMUM-UNCERTAINTY STATE WITH REDUCED NUMBER UNCERTAINTY IN A KERR NONLINEAR INTERFEROMETER [J].
KITAGAWA, M ;
YAMAMOTO, Y .
PHYSICAL REVIEW A, 1986, 34 (05) :3974-3987
[10]   EFFECTIVE FIELD-THEORY MODEL FOR THE FRACTIONAL QUANTUM HALL-EFFECT [J].
ZHANG, SC ;
HANSSON, TH ;
KIVELSON, S .
PHYSICAL REVIEW LETTERS, 1989, 62 (01) :82-85