MULTIVARIATE DATA-ANALYSIS APPLIED TO LOW-DENSITY POLYETHYLENE REACTORS

被引:94
作者
SKAGERBERG, B
MACGREGOR, JF
KIPARISSIDES, C
机构
[1] MCMASTER UNIV, DEPT CHEM ENGN, HAMILTON L8S 4L7, ONTARIO, CANADA
[2] ARISTOTELIAN UNIV SALONIKA, DEPT CHEM ENGN, Thessaloniki, GREECE
关键词
D O I
10.1016/0169-7439(92)80117-M
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we discuss how partial least squares regression (PLS) can be applied to the analysis of complex process data. PLS models are here used to: (i) accomplish a better understanding of the underlying relations of the process; (ii) monitor the performance of the process by means of multivariate control charts; and (iii) build predictive models for inferential control. The strategies for applying PLS to process data are described in detail and illustrated by an example in which low-density polyethylene production is simulated.
引用
收藏
页码:341 / 356
页数:16
相关论文
共 21 条
  • [1] Box G. E. P., 1970, Time series analysis, forecasting and control
  • [2] Box G.E.P., 1987, EMPIRICAL MODEL BUIL
  • [3] BOX GEP, 1978, STATISTICS EXPT
  • [4] PARTIAL LEAST-SQUARES REGRESSION - A TUTORIAL
    GELADI, P
    KOWALSKI, BR
    [J]. ANALYTICA CHIMICA ACTA, 1986, 185 : 1 - 17
  • [5] Geladi P., 1988, J CHEMOMETR, V2, P231, DOI 10.1002/cem.1180020403
  • [6] Hoskuldsson A., 1988, J CHEMOMETR, V2, P211, DOI DOI 10.1002/CEM.1180020306
  • [7] Jolliffe I., 2002, PRINCIPAL COMPONENT
  • [8] MULTIVARIABLE COMPUTER CONTROL OF A BUTANE HYDROGENOLYSIS REACTOR .2. DATA-COLLECTION, PARAMETER-ESTIMATION, AND STOCHASTIC DISTURBANCE IDENTIFICATION
    JUTAN, A
    MACGREGOR, JF
    WRIGHT, JD
    [J]. AICHE JOURNAL, 1977, 23 (05) : 742 - 750
  • [9] KAPARISSIDES C, 1986, NATO ACI SERIES
  • [10] MULTIVARIATE STATISTICAL MONITORING OF PROCESS OPERATING PERFORMANCE
    KRESTA, JV
    MACGREGOR, JF
    MARLIN, TE
    [J]. CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 1991, 69 (01) : 35 - 47