EFFECTS OF GAP JUNCTION CONDUCTANCE ON DYNAMICS OF SINOATRIAL NODE CELLS - 2-CELL AND LARGE-SCALE NETWORK MODELS

被引:41
作者
CAI, DM
WINSLOW, RL
NOBLE, D
机构
[1] UNIV OXFORD,PHYSIOL LAB,OXFORD OX1 3PT,ENGLAND
[2] UNIV MINNESOTA,CTR ARMY HIGH PERFORMANCE COMP,MINNEAPOLIS,MN 55455
关键词
D O I
10.1109/10.284940
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
A computational model of single rabbit sinoatrial (SA) node cells has been revised to fit data on regional variation of rabbit SA node cell oscillation properties. The revised model simulates differences in oscillation frequency, maximum diastolic potential, overshoot potential, and peak upstroke velocity observed in cells from different regions of the node. Dynamic properties of electrically coupled cells, each with different intrinsic oscillation frequency, are studied as a function of coupling conductance. Simulation results demonstrate at least four distinct regimes of behavior as coupling conductance is varied: a) independent oscillation (G(c) < 1 pS); b) complex oscillation (1 less than or equal to G(c) < 220 pS); c) frequency, but not waveform entrainment (G(c) greater than or equal to 220 pS); and d) frequency and waveform entrainment (G(c) greater than or equal to 50 nS). The conductance of single cardiac myocyte gap junction channels is about 50 pS. These simulations therefore show that very few gap junction channels between each cell are required for frequency entrainment. Analyses of large-scale SA node network models implemented on the Connection Machine CM-200 supercomputer indicate that frequency entrainment of large networks is also supported by a small number of gap junction channels between neighboring cells.
引用
收藏
页码:217 / 231
页数:15
相关论文
共 57 条