EXTENDING SELF-SIMILARITY FOR FRACTIONAL BROWNIAN-MOTION

被引:51
作者
KAPLAN, LM [1 ]
KUO, CCJ [1 ]
机构
[1] UNIV SO CALIF,DEPT ELECT ENGN SYST,LOS ANGELES,CA 90089
基金
美国国家科学基金会;
关键词
D O I
10.1109/78.340789
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The fractional Brownian motion (fBm) model has proven to be valuable in modeling many natural processes because of its persistence for large time lags. However, the model is characterized by one single parameter that cannot distinguish between short- and long-term correlation effects. This work investigates the idea of extending self-similarity to create a correlation model that generalizes discrete fBm referred to as asymptotic fBm (afBm). Namely, afBm is parameterized by variables controlling short- and long-term correlation effects. We propose a fast parameter estimation algorithm for afBm based on the Haar transform, and we demonstrate the performance of this parameter estimation algorithm with numerical simulations.
引用
收藏
页码:3526 / 3530
页数:5
相关论文
共 16 条
[1]  
BENZI R, 1993, PHYS REV E, V48, pR30
[2]   SIGNAL MODELING WITH FILTERED DISCRETE FRACTIONAL NOISE PROCESSES [J].
DERICHE, M ;
TEWFIK, AH .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1993, 41 (09) :2839-2849
[3]   WAVELET ANALYSIS AND SYNTHESIS OF FRACTIONAL BROWNIAN-MOTION [J].
FLANDRIN, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (02) :910-917
[4]  
GRANGER CW, 1980, J TIME SERIES ANAL, V1
[5]  
Haykin S., 1991, ADAPTIVE FILTER THEO
[6]  
HOSKING JRM, 1981, BIOMETRIKA, V68, P165, DOI 10.1093/biomet/68.1.165
[7]   FRACTAL ESTIMATION FROM NOISY DATA VIA DISCRETE FRACTIONAL GAUSSIAN-NOISE (DFGN) AND THE HAAR BASIS [J].
KAPLAN, LM ;
KUO, CCJ .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1993, 41 (12) :3554-3562
[8]  
KAPLAN LM, 1993, SIPI242 U SO CAL TEC
[9]   1/F NOISE [J].
KESHNER, MS .
PROCEEDINGS OF THE IEEE, 1982, 70 (03) :212-218
[10]   FRACTIONAL BROWNIAN-MOTION - A MAXIMUM-LIKELIHOOD ESTIMATOR AND ITS APPLICATION TO IMAGE TEXTURE [J].
LUNDAHL, T ;
OHLEY, WJ ;
KAY, SM ;
SIFFERT, R .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1986, 5 (03) :152-161