PERTURBATION BOUNDS FOR THE DEFINITE GENERALIZED EIGENVALUE PROBLEM

被引:83
作者
STEWART, GW
机构
[1] Department of Computer Science University of Maryland, College Park
关键词
D O I
10.1016/0024-3795(79)90094-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A and B be Hermitian matrices, and let c(A, B) = inf{|xH(A + iB)x|:{norm of matrix} = 1}. The eigenvalue problem Ax = λBx is called definite if c(A, B)>0. It is shown that a definite problem has a complete system of eigenvectors and that its eigenvalues are real. Under pertubations of A and B, the eigenvalues behave like the eigenvalues of a Hermitian matrix in the sense that there is a 1-1 pairing of the eigenvalues with the perturbed eigenvalues and a uniform bound for their differences (in this case in the chordal metric). Pertubation bounds are also developed for eigenvectors and eigenspaces. © 1979.
引用
收藏
页码:69 / 85
页数:17
相关论文
共 14 条
[1]  
BRICKMAN L, 1961, P AM MATH SOC, V12, P61
[2]  
Calabi E., 1964, P AM MATH SOC, V15, P844, DOI DOI 10.1090/S0002-9939-1964-0166203-7
[3]  
CRAWFORD CR, 1976, SIAM J NUMER ANAL, V6, P854
[4]   ROTATION OF EIGENVECTORS BY A PERTURBATION .3. [J].
DAVIS, C ;
KAHAN, WM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1970, 7 (01) :1-&
[5]  
Greub W.H, 1967, LINEAR ALGEBRA
[6]  
Hestenes MR, 1968, LINEAR ALGEBRA APPL, V1, P397
[7]  
Householder A. S., 1964, THEORY MATRICES NUME
[8]  
Kato T., 1966, PERTURBATION THEORY, V132, P396
[9]  
Shisha O., 1967, INEQUALITIES, P309
[10]  
STEWART GA, UNPUBLISHED