THE PERIODIC TODA CHAIN AND A MATRIX GENERALIZATION OF THE BESSEL-FUNCTION RECURSION-RELATIONS

被引:123
作者
PASQUIER, V
GAUDIN, M
机构
[1] Service de Phys. Theor., CENS, Gif-sur-Yvette
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1992年 / 25卷 / 20期
关键词
D O I
10.1088/0305-4470/25/20/007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We obtain the quantization conditions of the periodic Toda lattice in the Baxter form: LAMBDA(u)Q(u) = i(N) Q(u + ihBAR) + i(-N) Q(u - ihBAR) LAMBDA is the 'transfer matrix' containing the information about the spectrum and Q is an integral operator commuting with LAMBDA. The logarithms of the matrix elements of Q are the generating functions of the canonical Backlund transformation. The requirement that Q is analytic and vanishes when u goes to infinity completely determines the spectrum of LAMBDA.
引用
收藏
页码:5243 / 5252
页数:10
相关论文
共 9 条
[1]  
Baxter R. J., 2007, EXACTLY SOLVED MODEL
[2]   CANONICALLY CONJUGATE VARIABLES FOR KORTEWEG-DEVRIES EQUATION AND TODA LATTICE WITH PERIODIC BOUNDARY-CONDITIONS [J].
FLASCHKA, H ;
MCLAUGHLIN, DW .
PROGRESS OF THEORETICAL PHYSICS, 1976, 55 (02) :438-456
[3]  
Gaudin M, 1983, FONCTION ONDE BETHE
[4]   THE QUANTUM-MECHANICAL TODA LATTICE .2. [J].
GUTZWILLER, MC .
ANNALS OF PHYSICS, 1981, 133 (02) :304-331
[5]   SOME PERIODIC TODA LATTICES [J].
KAC, M ;
VANMOERBEKE, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1975, 72 (04) :1627-1629
[6]  
SKLYANIN EK, 1985, LECT NOTES PHYS, V226, P196
[7]  
SKLYANIN EK, 1990, INTEGRABLE SUPERINTE
[8]  
Toda M., 1981, SPRINGER SERIES SOLI, V20
[9]  
WHITTACKER E, 1958, MODERN ANAL