SPINOR FIELDS INVARIANT UNDER SPACE-TIME TRANSFORMATIONS

被引:16
作者
BECKERS, J
HARNAD, J
JASSELETTE, P
机构
[1] Physique Théorique et Mathématique, Université de Liège
[2] Centre de Recherches Mathématiques, Université de Montréal, Montreal
[3] Institut de Physique au Sart Tilman, Bâtiment B.5
关键词
D O I
10.1063/1.524355
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Spinor fields invariant under the subgroups of the Poincaré group or under the maximal subgroups of the conformal group of space-time are analyzed. It is shown that only certain Poincaré subgroups, all of dimension less than or equal to six, can leave two component spinor fields invariant, with rather severe restrictions on the fields. Tables listing all such invariant fields for subgroups of dimension greater than or equal to four are given. Construction of Dirac spinors and connections between invariant spinors and tensors are discussed: In particular it is shown that from any two-component spinor invariant under a Poincaré subgroup a real skew-symmetric tensor invariant under the same group may be constructed. © 1980 American Institute of Physics.
引用
收藏
页码:2491 / 2499
页数:9
相关论文
共 35 条
[1]  
Bacry H., 1974, Reports on Mathematical Physics, V5, P361, DOI 10.1016/0034-4877(74)90042-1
[2]  
Bacry H., 1974, Reports on Mathematical Physics, V5, P145, DOI 10.1016/0034-4877(74)90023-8
[3]   GROUP-THEORETICAL ANALYSIS OF ELEMENTARY PARTICLES IN AN EXTERNAL ELECTROMAGNETIC FIELD .1. RELATIVISTIC PARTICLE IN A CONSTANT AND UNIFORM FIELD [J].
BACRY, H ;
COMBE, P ;
RICHARD, JL .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1970, 67 (02) :267-+
[4]   AN INTRODUCTION TO SPINORS [J].
BADE, WL ;
JEHLE, H .
REVIEWS OF MODERN PHYSICS, 1953, 25 (03) :714-728
[5]   SUBGROUPS OF EUCLIDEAN GROUP AND SYMMETRY BREAKING IN NONRELATIVISTIC QUANTUM-MECHANICS [J].
BECKERS, J ;
PATERA, J ;
PERROUD, M ;
WINTERNITZ, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (01) :72-83
[6]   TENSOR FIELDS INVARIANT UNDER SUBGROUPS OF CONFORMAL GROUP OF SPACE-TIME [J].
BECKERS, J ;
HARNAD, J ;
PERROUD, M ;
WINTERNITZ, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (10) :2126-2153
[7]   METRIC TENSORS INVARIANT UNDER SOME SUBGROUPS OF CONFORMAL GROUP OF SPACE-TIME [J].
BECKERS, J ;
JAMINON, M .
PHYSICA A, 1978, 94 (01) :165-180
[8]   INVARIANT TENSORS FOR SOME MAXIMAL SUBGROUPS OF THE CONFORMAL GROUP OF SPACE-TIME [J].
BECKERS, J ;
JAMINON, M ;
SERPE, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1979, 12 (09) :1341-1356
[9]  
Beckers J., 1976, Bulletin de la Societe Royale des Sciences de Liege, V45, P279
[10]  
BECKERS J, UNPUBLISHED