THE EUCLIDEAN DISTANCE TRANSFORM IN ARBITRARY DIMENSIONS

被引:104
作者
RAGNEMALM, I
机构
[1] Image Processing Group, Dept. of EE, Linköping University
关键词
EUCLIDEAN METRIC; DISTANCE TRANSFORMATION; ARBITRARY DIMENSIONS; RASTER SCANNING;
D O I
10.1016/0167-8655(93)90152-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The original sequential Euclidean distance transformation is not separable. This makes it useful only on single processor systems. We suggest variants for 2, 3 and arbitrary dimensions that are separable, suitable for various parallel architectures. The results include a 4-scan algorithm for 3-dimensional images.
引用
收藏
页码:883 / 888
页数:6
相关论文
共 10 条
[1]   DISTANCE TRANSFORMATIONS IN DIGITAL IMAGES [J].
BORGEFORS, G .
COMPUTER VISION GRAPHICS AND IMAGE PROCESSING, 1986, 34 (03) :344-371
[2]   DISTANCE TRANSFORMATIONS IN ARBITRARY DIMENSIONS [J].
BORGEFORS, G .
COMPUTER VISION GRAPHICS AND IMAGE PROCESSING, 1984, 27 (03) :321-345
[3]   EUCLIDEAN DISTANCE MAPPING [J].
DANIELSSON, PE .
COMPUTER GRAPHICS AND IMAGE PROCESSING, 1980, 14 (03) :227-248
[4]   PACKING VOLUMES BY SPHERES [J].
MOHR, R ;
BAJCSY, R .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1983, 5 (01) :111-116
[5]   A METHOD FOR OBTAINING SKELETONS USING A QUASI-EUCLIDEAN DISTANCE [J].
MONTANARI, U .
JOURNAL OF THE ACM, 1968, 15 (04) :600-+
[6]  
Ragnemalm I., 1990, Proceedings of the 5th International Conference on Image Analysis and Processing. Progress in Image Analysis and Processing, P204
[7]  
RAGNEMALM I, 1989, 6TH P SCAND C IM AN, P379
[8]  
ROSENFEL.A, 1966, J ACM, V13, P471
[9]  
Yamada H., 1984, Seventh International Conference on Pattern Recognition (Cat. No. 84CH2046-1), P69
[10]  
Ye Q.-Z., 1988, 9th International Conference on Pattern Recognition (IEEE Cat. No.88CH2614-6), P495, DOI 10.1109/ICPR.1988.28276