AN O(N3L) POTENTIAL REDUCTION ALGORITHM FOR LINEAR-PROGRAMMING

被引:185
作者
YE, YY
机构
[1] Department of Management Sciences, The University of Iowa, Iowa City, 52242, IA
关键词
LINEAR PROGRAMMING; PRIMAL AND DUAL; INTERIOR ALGORITHMS; POTENTIAL FUNCTIONS;
D O I
10.1007/BF01594937
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We describe a primal-dual potential function for linear programming: [GRAPHICS] where p greater-than-or-equal-to n, x is the primal variable, and s is the dual-slack variable. As a result, we develop an interior point algorithm seeking reductions in the potential function with p = n + square root n. Neither tracing the central path nor using the projective transformation, the algorithm converges to the optimal solution set in O(square root nL) iterations and uses O(n3L) total arithmetic operations. We also suggest a practical approach to implementing the algorithm.
引用
收藏
页码:239 / 258
页数:20
相关论文
共 37 条
[1]   AN IMPLEMENTATION OF KARMARKAR ALGORITHM FOR LINEAR-PROGRAMMING [J].
ADLER, I ;
RESENDE, MGC ;
VEIGA, G ;
KARMARKAR, N .
MATHEMATICAL PROGRAMMING, 1989, 44 (03) :297-335
[2]  
[Anonymous], 2003, LINEAR PROGRAMMING
[3]   A Monotonic Projective Algorithm for Fractional Linear Programming [J].
Anstreicher, Kurt M. .
ALGORITHMICA, 1986, 1 (1-4) :483-498
[4]   A VARIATION ON KARMARKAR ALGORITHM FOR SOLVING LINEAR-PROGRAMMING PROBLEMS [J].
BARNES, ER .
MATHEMATICAL PROGRAMMING, 1986, 36 (02) :174-182
[5]   THE NONLINEAR GEOMETRY OF LINEAR-PROGRAMMING .1. AFFINE AND PROJECTIVE SCALING TRAJECTORIES [J].
BAYER, DA ;
LAGARIAS, JC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 314 (02) :499-526
[6]  
BENDAYA M, 1988, J885 GEORG I TECHN S
[7]   A Polynomial Newton Method for Linear Programming [J].
de Ghellinck, Guy ;
Vial, Jean-Philippe .
ALGORITHMICA, 1986, 1 (1-4) :425-453
[8]  
Dikin I. I., 1967, SOVIET MATH DOKLADY, V8, P674
[9]  
Fiacco AV, 1990, NONLINEAR PROGRAMMIN
[10]  
Frisch KR., 1955, LOGARITHMIC POTENTIA