AN EFFICIENT ALGORITHM FOR FAST O(N-STAR-IN(N)) BOX COUNTING

被引:54
作者
HOU, XJ
GILMORE, R
MINDLIN, GB
SOLARI, HG
机构
[1] Department of Physics and Atmospheric Science, Drexel University, Philadelphia
基金
美国国家科学基金会;
关键词
D O I
10.1016/0375-9601(90)90844-E
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A new topological ordering is defined which significantly reduces the time requirements for the fast box counting method proposed in a recent paper by Liebovitch and Toth. Only one sorting is necessary in this algorithm. © 1990.
引用
收藏
页码:43 / 46
页数:4
相关论文
共 13 条
[1]  
Aho A. V., 1974, DESIGN ANAL COMPUTER
[2]  
Barnsley MF., 2014, FRACTALS EVERYWHERE
[3]   AN EFFICIENT PROCEDURE TO COMPUTE FRACTAL DIMENSIONS BY BOX COUNTING [J].
GIORGILLI, A ;
CASATI, D ;
SIRONI, L ;
GALGANI, L .
PHYSICS LETTERS A, 1986, 115 (05) :202-206
[4]   ON THE FRACTAL DIMENSION OF THE HENON ATTRACTOR [J].
GRASSBERGER, P .
PHYSICS LETTERS A, 1983, 97 (06) :224-226
[5]   IMPRACTICALITY OF A BOX-COUNTING ALGORITHM FOR CALCULATING THE DIMENSIONALITY OF STRANGE ATTRACTORS [J].
GREENSIDE, HS ;
WOLF, A ;
SWIFT, J ;
PIGNATARO, T .
PHYSICAL REVIEW A, 1982, 25 (06) :3453-3456
[6]   2-DIMENSIONAL MAPPING WITH A STRANGE ATTRACTOR [J].
HENON, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 50 (01) :69-77
[7]  
Hopcroft J. E., 1979, INTRO AUTOMATA THEOR
[8]  
KAPLAN D, UNPUBLISHED
[9]  
KOLMOGOROV AN, 1958, DOKL AKAD NAUK SSSR+, V119, P861
[10]  
LIEBOVITCH LS, 1908, PHYS LETT A, V141, P386