A DOMAIN DECOMPOSITION PRECONDITIONER BASED ON A CHANGE TO A MULTILEVEL NODAL BASIS

被引:27
作者
TONG, CH
CHAN, TF
KUO, CCJ
机构
[1] UNIV CALIF LOS ANGELES,DEPT MATH,LOS ANGELES,CA 90024
[2] UNIV SO CALIF,DEPT ELECT ENGN SYST,LOS ANGELES,CA 90089
来源
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING | 1991年 / 12卷 / 06期
关键词
DOMAIN DECOMPOSITION; HIERARCHICAL BASIS; MULTILEVEL NODAL BASIS; PRECONDITIONED CONJUGATE GRADIENT METHODS; SCHUR COMPLEMENT;
D O I
10.1137/0912082
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A domain decomposition method based on a simple change of basis on the interfaces and vertices is presented. It is shown that this leads to an effective preconditioner compared to the ones previously considered, such as the preconditioner by Bramble, Pasciak, and Schatz (BPS) [Math. Comp., 47 (1986), pp. 103-134], and the hierarchical basis domain decomposition (HBDD) preconditioner by Smith and Widlund [SIAM J. Sci. Statist. Comput., 11 (1990), pp. 1212-1226]. This domain-decomposed preconditioner is based on Bramble, Pasciak, and Xu's multilevel nodal basis preconditioner [Math. Comp., to appear]. It is shown that analytically this method and the HBDD method give the same order of condition number, namely, O(log2(H/h)) for problems with smooth coefficients. Numerically this method appears to be more effective with little additional cost and for the model Poisson problem, the condition numbers appear to be O(1).
引用
收藏
页码:1486 / 1495
页数:10
相关论文
共 11 条
[1]   THE HIERARCHICAL BASIS MULTIGRID METHOD [J].
BANK, RE ;
DUPONT, TF ;
YSERENTANT, H .
NUMERISCHE MATHEMATIK, 1988, 52 (04) :427-458
[2]  
BRAMBLE JH, 1990, MATH COMPUT, V55, P1, DOI 10.1090/S0025-5718-1990-1023042-6
[3]  
BRAMBLE JH, 1986, MATH COMPUT, V47, P103, DOI 10.1090/S0025-5718-1986-0842125-3
[4]  
CHAN TF, 1989, 3RD P INT S DOM DEC
[5]   A CAPACITANCE MATRIX-METHOD FOR DIRICHLET PROBLEM ON POLYGON REGION [J].
DRYJA, M .
NUMERISCHE MATHEMATIK, 1982, 39 (01) :51-64
[6]   MULTILEVEL FILTERING ELLIPTIC PRECONDITIONERS [J].
KUO, CCJ ;
CHAN, TF ;
TONG, C .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1990, 11 (03) :403-429
[7]   A DOMAIN DECOMPOSITION ALGORITHM USING A HIERARCHICAL BASIS [J].
SMITH, BF ;
WIDLUND, OB .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1990, 11 (06) :1212-1220
[8]  
SMITH BF, OPTIMAL DOMAIN DECOM
[9]  
XU J, 1989, THESIS CORNELL U NY
[10]  
XU J, UNPUB SIAM J SCI STA