SYMMETRY-BREAKING HOPF-BIFURCATION IN ANISOTROPIC SYSTEMS

被引:49
作者
SILBER, M
RIECKE, H
KRAMER, L
机构
[1] NORTHWESTERN UNIV,DEPT ENGN SCI & APPL MATH,EVANSTON,IL 60208
[2] GEORGIA INST TECHNOL,CTR DYNAM SYST & NONLINEAR STUDIES,ATLANTA,GA 30332
[3] UNIV BAYREUTH,INST PHYS,W-8580 BAYREUTH,GERMANY
来源
PHYSICA D | 1992年 / 61卷 / 1-4期
关键词
D O I
10.1016/0167-2789(92)90170-R
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Symmetry-breaking Hopf bifurcation from a spatially uniform steady state of a spatially extended anisotropic system is considered. This work is motivated by the experimental observation of a Hopf bifurcation to oblique traveling rolls in electrohydrodynamic convection in planarly aligned nematic liquid crystals. Symmetry forces four traveling rolls to lose stability simultaneously. Four coupled complex ordinary differential equations describing the nonlinear interaction of the traveling rolls are analyzed using methods of equivariant bifurcation theory. Six branches of periodic solutions always bifurcate from the trivial state at the Hopf bifurcation. These correspond to traveling and standing wave patterns. In an open region of coefficient space there is a primary bifurcation to a quasiperiodic standing wave solution. The Hopf bifurcation can also lead directly to an aperiodic attractor in the form of an asymptotically stable, structurally stable heteroclinic cycle. The theory is applied to a model for the transition from normal to oblique traveling rolls.
引用
收藏
页码:260 / 278
页数:19
相关论文
共 36 条
[1]   HETEROCLINIC CYCLES AND MODULATED TRAVELING WAVES IN SYSTEMS WITH O(2) SYMMETRY [J].
ARMBRUSTER, D ;
GUCKENHEIMER, J ;
HOLMES, P .
PHYSICA D, 1988, 29 (03) :257-282
[2]  
Blinov L. M., 1983, ELECTROOPTICAL MAGNE
[3]   ON ELECTRICALLY DRIVEN PATTERN-FORMING INSTABILITIES IN PLANAR NEMATICS [J].
BODENSCHATZ, E ;
ZIMMERMANN, W ;
KRAMER, L .
JOURNAL DE PHYSIQUE, 1988, 49 (11) :1875-1899
[4]   EXPERIMENTS ON 3 SYSTEMS WITH NONVARIATIONAL ASPECTS [J].
BODENSCHATZ, E ;
CANNELL, DS ;
DEBRUYN, JR ;
ECKE, R ;
HU, YC ;
LERMAN, K ;
AHLERS, G .
PHYSICA D-NONLINEAR PHENOMENA, 1992, 61 (1-4) :77-93
[5]   BENJAMIN-FEIR TURBULENCE IN CONVECTIVE BINARY FLUID MIXTURES [J].
BRAND, HR ;
LOMDAHL, PS ;
NEWELL, AC .
PHYSICA D, 1986, 23 (1-3) :345-361
[6]   CONVECTION IN A ROTATING LAYER - SIMPLE CASE OF TURBULENCE [J].
BUSSE, FH ;
HEIKES, KE .
SCIENCE, 1980, 208 (4440) :173-175
[7]   SQUARE PATTERN CONVECTION IN BINARY FLUIDS WITH EXPERIMENTAL BOUNDARY-CONDITIONS [J].
CLUNE, T ;
KNOBLOCH, E .
PHYSICAL REVIEW A, 1991, 44 (12) :8084-8090
[8]   HOPF-BIFURCATION IN THE PRESENCE OF SYMMETRY [J].
GOLUBITSKY, M ;
STEWART, I .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1985, 87 (02) :107-165
[9]   STRUCTURALLY STABLE HETEROCLINIC CYCLES [J].
GUCKENHEIMER, J ;
HOLMES, P .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1988, 103 :189-192
[10]   SPATIOTEMPORAL CONCENTRATION PATTERNS IN A SURFACE-REACTION - PROPAGATING AND STANDING WAVES, ROTATING SPIRALS, AND TURBULENCE [J].
JAKUBITH, S ;
ROTERMUND, HH ;
ENGEL, W ;
VONOERTZEN, A ;
ERTL, G .
PHYSICAL REVIEW LETTERS, 1990, 65 (24) :3013-3016