MOTION BY CURVATURE BY SCALING NONLOCAL EVOLUTION-EQUATIONS

被引:43
作者
DEMASI, A
ORLANDI, E
PRESUTTI, E
TRIOLO, L
机构
[1] UNIV LAQUILA,DIPARTIMENTO MATEMAT,I-67100 LAQUILA,ITALY
[2] UNIV ROMA TOR VERGATA,DIPARTIMENTO MATEMAT,I-00133 ROME,ITALY
关键词
PHASE SEPARATION; INTERFACE DYNAMICS;
D O I
10.1007/BF01054339
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove convergence to a motion by mean curvature by scaling diffusively a nonlinear, nonlocal evolution equation. This equation was introduced earlier to describe the macroscopic behavior of a ferromagnetic spin system with Kac interaction which evolves with Glauber dynamics. The convergence is proven in any time interval in which the limiting motion is regular.
引用
收藏
页码:543 / 570
页数:28
相关论文
共 29 条
[1]  
BARLES G, 1992, 92NA020 CARN MELL U
[2]  
BONAVENTURA L, 1992, UTM368 DIP MAT TRENT
[3]   MOTION BY MEAN-CURVATURE AS THE SINGULAR LIMIT OF GINZBURG-LANDAU DYNAMICS [J].
BRONSARD, L ;
KOHN, RV .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 90 (02) :211-237
[4]  
BUTTA P, IN PRESS J STAT PHYS
[5]   GENERATION AND PROPAGATION OF INTERFACES FOR REACTION DIFFUSION-EQUATIONS [J].
CHEN, XF .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1992, 96 (01) :116-141
[6]  
CHEN YG, 1991, J DIFFER GEOM, V33, P749
[7]  
CRANDALL MG, 1983, T AM MATH SOC, V27, P1
[8]  
DALPASSO R, 1991, HEAT EQUATION NONLOC
[9]  
DEMASI A, 1992, CARR2992 REP
[10]  
DEMASI A, 1993, CARR1093 REP