CYCLES OF CHAOTIC INTERVALS IN A TIME-DELAYED CHUA'S CIRCUIT

被引:99
作者
Maistrenko, Yu. L. [1 ]
Maistrenko, V. L. [1 ]
Chua, L. O. [2 ]
机构
[1] Acad Sci Ukraine, Inst Math, 3 Repin St, UA-252601 Kiev, Ukraine
[2] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 1993年 / 3卷 / 06期
关键词
D O I
10.1142/S0218127493001215
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the bifurcations of attractors of a one-dimensional 2-segment piecewise-linear map. We prove that the parameter regions of existence of stable point cycles gamma are separated by regions of existence of stable interval cycles Gamma containing chaotic everywhere dense trajectories. Moreover, we show that the period-doubling phenomenon for cycles of chaotic intervals is characterized by two universal constants delta and alpha, whose values are calculated from explicit formulas.
引用
收藏
页码:1557 / 1572
页数:16
相关论文
共 7 条
[1]   DEVILS STAIRCASE ROUTE TO CHAOS IN A NONLINEAR CIRCUIT [J].
CHUA, LO ;
YAO, Y ;
YANG, Q .
INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 1986, 14 (04) :315-329
[2]   VANDERPOL AND CHAOS [J].
KENNEDY, MP ;
CHUA, LO .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1986, 33 (10) :974-980
[3]  
Maistrenko V., 1992, 9233 AC SCI I MATH U, P55
[4]  
Marcuard J., 1989, PREPRINT
[5]  
Misiurewicz M., 1988, PREPRINT
[6]  
PEI LQ, 1986, IEEE T CIRCUITS SYST, V33, P438
[7]  
Sharkovsky A., 1993, J CIRCUITS IN PRESS, V3