COMPUTING A MAXIMUM CARDINALITY MATCHING IN A BIPARTITE GRAPH IN TIME O(N1.5-SQUARE-ROOT-M/LOG N)

被引:80
作者
ALT, H
BLUM, N
MEHLHORN, K
PAUL, M
机构
[1] UNIV BONN,W-5300 BONN,GERMANY
[2] UNIV SAARLAND,FACHBEREICH INFORMAT,W-6600 SAARBRUCKEN,GERMANY
关键词
ANALYSIS OF ALGORITHMS; BIPARTITE GRAPH; MATCHING;
D O I
10.1016/0020-0190(91)90195-N
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We show how to compute a maximum cardinality matching in a bipartite graph of n vertices in time O(n1.5 square-root m/log n). For dense graphs this improves on the O(square-root n m) algorithm of Hopcroft and Karp. The speed-up is obtained by an application of the fast adjacency matrix scanning technique of Cheriyan, Hagerup and Mehlhorn.
引用
收藏
页码:237 / 240
页数:4
相关论文
共 4 条
[1]   A FAST AND SIMPLE ALGORITHM FOR THE MAXIMUM FLOW PROBLEM [J].
AHUJA, RK ;
ORLIN, JB .
OPERATIONS RESEARCH, 1989, 37 (05) :748-759
[2]  
CHERIYAN J, 1990, 17 ICALP
[3]   A NEW APPROACH TO THE MAXIMUM-FLOW PROBLEM [J].
GOLDBERG, AV ;
TARJAN, RE .
JOURNAL OF THE ACM, 1988, 35 (04) :921-940
[4]  
Hopcroft J. E., 1973, SIAM Journal on Computing, V2, P225, DOI 10.1137/0202019