The intracortical synaptic relationships of pyramidal neurons in the cat motor cortex were studied by intracellular recording and labeling techniques. Neurons that responded with monosynaptic excitatory postsynaptic potentials (EPSPs) to microstimulation in the somatosensory cortex were identified by intracellular recordings. Long-term potentiation (LTP) was evoked in all of these neurons (n = 15), following tetanic stimulation (50 Hz, 5 s) of their afferents from the somatosensory cortex. Three of these cells (cells A-C) were identified as pyramidal neurons, following intracellular injections of Neurobiotin. The intracortical axon collaterals of these labeled cells arborized extensively, forming terminal clusters both in close proximity to the parent soma and along their long, horizontal branches. Terminal clusters in both the proximal and in the distal termination zones of each of the cells were studied by electron microscopy. In their proximal arborization zones, the axon collaterals of the labeled pyramidal neurons synapsed preferentially with dendritic spines belonging to other pyramidal cells. In contrast, in their distal terminal clusters, the axon collaterals of each of the cells formed synapses in different proportions with different postsynaptic targets. The distal axon collaterals of cell A formed 86% of their synapses with pyramidal neurons; those of cell B formed 64% of their synapses with pyramidal cells, the remaining synapses with the dendritic shafts and somata of nonpyramidal neurons, and those of cell C provided most of their output (68%) to nonpyramidal, presumably inhibitory neurons. These findings suggest a high selectivity of intrinsic axon collaterals to form specific patterns of synapses. The patterns of synaptic interactions formed by these intrinsic axon collaterals may be a substrate for shaping and modulating representation maps in the motor cortex. (C) 1993 Wiley-Liss, Inc.