METAMORPHOSES - SUDDEN JUMPS IN BASIN BOUNDARIES

被引:20
作者
ALLIGOOD, KT
TEDESCHINILALLI, L
YORKE, JA
机构
[1] UNIV ROME LA SAPIENZA,DIPARTMENTO MATEMAT,I-00185 ROME,ITALY
[2] UNIV MARYLAND,DEPT MATH,COLLEGE PK,MD 20742
[3] UNIV MARYLAND,INST PHYS SCI & TECHNOL,COLLEGE PK,MD 20742
关键词
D O I
10.1007/BF02100002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In some invertible maps of the plane that depend on a parameter, boundaries of basins of attraction are extremely sensitive to small changes in the parameter. A basin boundary can jump suddenly, and, as it does, change from being smooth to fractal. Such changes are called basin boundary metamorphoses. We prove (under certain non-degeneracy assumptions) that a metamorphosis occurs when the stable and unstable manifolds of a periodic saddle on the boundary undergo a homoclinic tangency.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 9 条
[1]  
Gavrilov N.K., 1972, MATH USSR SB, V17, P467
[2]  
Gavrilov NK, 1973, MATH USSR SB, V19, P139, DOI [10.1070/sm1973v019n01abeh001741, DOI 10.1070/SM1973V019N01ABEH001741]
[3]   BASIN BOUNDARY METAMORPHOSES - CHANGES IN ACCESSIBLE BOUNDARY ORBITS [J].
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICA D, 1987, 24 (1-3) :243-262
[4]  
Guckenheimer J., 2013, APPL MATH SCI, DOI 10.1007/978-1-4612- 1140-2
[5]   JUMPING STABLE MANIFOLDS FOR DISSIPATIVE MAPS OF THE PLANE [J].
HAMMEL, SM ;
JONES, CKRT .
PHYSICA D, 1989, 35 (1-2) :87-106
[6]  
NEWHOUSE S, 1974, TOPOLOGY, V13, P9
[7]   BIFURCATION TO INFINITELY MANY SINKS [J].
ROBINSON, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 90 (03) :433-459
[9]   HOW OFTEN DO SIMPLE DYNAMIC PROCESSES HAVE INFINITELY MANY COEXISTING SINKS [J].
TEDESCHINILALLI, L ;
YORKE, JA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 106 (04) :635-657