LAGRANGIAN SYSTEMS WITH CONSTRAINTS - A GEOMETRIC APPROACH TO THE METHOD OF LAGRANGE MULTIPLIERS

被引:46
作者
CARINENA, JF
RANADA, MF
机构
[1] Dept. of Fisica Teorica, Zaragoza Univ.
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1993年 / 26卷 / 06期
关键词
D O I
10.1088/0305-4470/26/6/016
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A geometric approach to the method of Lagrange multipliers is presented using the framework of the tangent bundle geometry. The non-holonomic systems with constraint functions linear in the velocities are studied in the first place and then, and using this study of the non-holonomic mechanical systems as a previous result, the holonomic systems are considered. The Lagrangian inverse problem is also analysed and, finally, the theory is illustrated with several examples.
引用
收藏
页码:1335 / 1351
页数:17
相关论文
共 32 条
[1]  
ABRAHAM R, 1978, F MECHANICS
[2]  
BRENDELEV VN, 1982, APPL MATH MECH PMM, V45, P351
[3]   SYMPLECTIC APPROACH TO NONCONSERVATIVE MECHANICS [J].
CANTRIJN, F .
JOURNAL OF MATHEMATICAL PHYSICS, 1984, 25 (02) :271-276
[4]  
Cantrijn F., 1986, Journal of Geometry and Physics, V3, P353, DOI 10.1016/0393-0440(86)90014-8
[5]   VECTOR-FIELDS GENERATING INVARIANTS FOR CLASSICAL DISSIPATIVE SYSTEMS [J].
CANTRIJN, F .
JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (09) :1589-1595
[6]   ON CONSTRAINED MECHANICAL SYSTEMS - DALEMBERT AND GAUSS PRINCIPLES [J].
CARDIN, F ;
ZANZOTTO, G .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (07) :1473-1479
[7]   THEORY OF SINGULAR LAGRANGIANS [J].
CARINENA, JF .
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 1990, 38 (09) :641-679
[8]   TANGENT BUNDLE GEOMETRY FOR LAGRANGIAN DYNAMICS [J].
CRAMPIN, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (16) :3755-3772
[9]   ON THE DIFFERENTIAL GEOMETRY OF THE EULER-LAGRANGE EQUATIONS, AND THE INVERSE PROBLEM OF LAGRANGIAN DYNAMICS [J].
CRAMPIN, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (10) :2567-2575
[10]  
CRAMPIN M, 1988, APPLICABLE DIFFERENT