THE PROJECTION METHOD FOR COMPUTING MULTIDIMENSIONAL ABSOLUTELY CONTINUOUS INVARIANT-MEASURES

被引:21
作者
DING, J [1 ]
ZHOU, AH [1 ]
机构
[1] ACAD SINICA,INST SYST SCI,BEIJING 100080,PEOPLES R CHINA
关键词
FROBENIUS-PERRON OPERATORS; INVARIANT MEASURES;
D O I
10.1007/BF02179467
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an algorithm for numerically computing an absolutely continuous invariant measure associated with a piecewise C-2 expanding mapping S:Omega-->Omega on a bounded region Omega subset of R(N). The method is based on the Galerkin projection principle for solving an operator equation in a Banach space. With the help of the modern notion of functions of bounded variation in multidimension, we prove the convergence of the algorithm.
引用
收藏
页码:899 / 908
页数:10
相关论文
共 17 条
[1]   APPROXIMATING MEASURES INVARIANT UNDER HIGHER-DIMENSIONAL CHAOTIC TRANSFORMATIONS [J].
BOYARSKY, A ;
LOU, YS .
JOURNAL OF APPROXIMATION THEORY, 1991, 65 (02) :231-244
[2]   ERROR-ESTIMATES OF THE MARKOV FINITE APPROXIMATION OF THE FROBENIUS-PERRON OPERATOR [J].
CHIU, C ;
DU, Q ;
LI, TY .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 19 (04) :291-308
[3]  
Ciarlet P.G., 2002, FINITE ELEMENT METHO
[4]   HIGH-ORDER APPROXIMATION OF THE FROBENIUS-PERRON OPERATOR [J].
DING, J ;
DU, Q ;
LI, TY .
APPLIED MATHEMATICS AND COMPUTATION, 1993, 53 (2-3) :151-171
[5]  
DING J, IN PRESS NONLINEAR A
[6]  
DING J, IN RPESS J MATH ANAL
[7]  
Ding J., 1993, INT J MATH MATH SCI, V16, P465
[8]  
DING J, 1991, J NONLINEAR ANAL, V17, P759
[9]  
Girault V., 2012, FINITE ELEMENT METHO, V5
[10]  
GIUSTI E, 1984, MINIMAL SURFACES FUN