MARKOV - A COMPUTER-PROGRAM FOR MULTISTATE MARKOV-MODELS WITH COVARIABLES

被引:27
作者
MARSHALL, G [1 ]
GUO, WS [1 ]
JONES, RH [1 ]
机构
[1] UNIV COLORADO,HLTH SCI CTR,SCH MED,DEPT PREVENT MED & BIOMETR,DENVER,CO 80262
关键词
MULTISTATE MODELS; MARKOV PROCESSES; SURVIVAL ANALYSIS; QUASI-NEWTON ALGORITHM; TIME-DEPENDENT COVARIABLES; DIABETIC RETINOPATHY;
D O I
10.1016/0169-2607(95)01641-6
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper discusses a computer program, called MARKOV, designed to fit a multi-state Markov model with covariables, with a particular emphasis on the analysis of survival data. The Markov model consists of k - 1 transient disease states and one absorbing state. The exact transition times are not observed, except in situations such as death. Baseline transition intensities and regression coefficients are estimated via the method of maximum likelihood using a quasi-Newton optimization algorithm. The program's output includes the parameter estimates, the standard error of the estimates, the matrix of the correlation of the estimates and minus two times the log-likelihood function, evaluated at the initial values and at the maximum likelihood estimates. Optionally, survival curves can be generated from each transient state, for one or more combination of covariable values and simple tests about the parameters. The program is illustrated by using a four-state model to determine factors influencing diabetic retinopathy in young subjects with insulin-dependent diabetes mellitus.
引用
收藏
页码:147 / 156
页数:10
相关论文
共 10 条
[1]  
COX DR, 1972, J R STAT SOC B, V34, P187
[2]  
DENNIS JE, 1983, NUMERICAL METHODS UN
[3]   THE USE OF THE MARKOV PROCESS IN DESCRIBING THE NATURAL COURSE OF DIABETIC-RETINOPATHY [J].
GARG, SK ;
MARSHALL, G ;
CHASE, HP ;
JACKSON, WE ;
ARCHER, P ;
CREWS, MJ .
ARCHIVES OF OPHTHALMOLOGY, 1990, 108 (09) :1245-1247
[5]   STATISTICAL-ANALYSIS OF THE STAGES OF HIV INFECTION USING A MARKOV MODEL [J].
LONGINI, IM ;
CLARK, WS ;
BYERS, RH ;
WARD, JW ;
DARROW, WW ;
LEMP, GF ;
HETHCOTE, HW .
STATISTICS IN MEDICINE, 1989, 8 (07) :831-843
[6]  
MARSHALL G, 1993, OPHTHALMOLOGY, V100, P1133
[7]  
MARSHALL G, 1995, IN PRESS STAT MED, V14
[8]  
MARSHALL G, 1990, THESIS U COLORADO DE
[9]  
SCHNABEL RB, 1985, ACM T MATH SOFTWARE, V11, P419, DOI 10.1145/6187.6192
[10]  
IMSL MATH LIBRARY US