THE CONSTRUCTION OF SOLVABLE LIE-ALGEBRAS FROM EQUIDIMENSIONAL NILPOTENT ALGEBRAS

被引:9
作者
PATERA, J [1 ]
ZASSENHAUS, H [1 ]
机构
[1] OHIO STATE UNIV,DEPT MATH,COLUMBUS,OH 43210
关键词
D O I
10.1016/0024-3795(90)90243-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The study of gradings of solvable Lie algebras L of finite dimensionover a field F of zero characteristic led the authors to the discovery of equidimensional nilpotent algebras L* uniquely determined by L up to F-isomorphy. Conversely, for any finite dimensional Lie algebra L* over F an algorithm is developed which yields in parametric form all solvable Lie algebras L determiningL* as the corresponding nilpotent algebra. The exposition is independent of Lie grading theory. It organizes in a novel way the classification of solvable Lie algebras of given dimension around the same task for nilpotent algebras. Every isomorphy class of solvable F-algebras is obtained in this way. © 1990.
引用
收藏
页码:89 / 120
页数:32
相关论文
共 10 条
[1]  
Bourbaki N., 1975, GROUPES ALGEBRES LIE
[2]  
CHEVALLEY C, 1955, THEORIE GROUPES LIE
[3]  
Humphreys J.E, 1980, GRADUATE TEXTS MATH, V9
[4]  
JACOBSON N, 1962, LIE ALGEBRAS, P17
[5]   ON LIE GRADINGS .1. [J].
PATERA, J ;
ZASSENHAUS, H .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1989, 112 :87-159
[6]  
PATERA J, IN PRESS LINEAR ALGE
[7]  
PATERA J, UNPUB
[8]  
WIGNER EP, 1953, P NATL ACAD SCI USA, V39, P510
[9]  
ZASSENHAUS H, 1975, S MATH, V15, P499
[10]  
ZASSENHUAS H, 1983, LIE GROPUS LIE ALGEB